

A Comparative Evaluation of the MMC Al 6061/TiB2/12P and the Microstructures and Mechanical Properties of Al 6061 Alloy

¹Rajat Kumar Misra, ²Ramesh Prabhat, ³Sriram Pradhan

^{1,2,3}Assistant Professor, Department of Electrical Engineering, GIET, Ghangapatana, Bhubaneswar

ABSTRACT: Al 6061 alloy is widely used commercially in transportation, construction and similar industries. Apart from its excellent corrosion resistance, it has excellent mechanical properties due to which the alloy finds great application in shipbuilding Al-TiB₂ composites are metal matrix composites (MMC). can be produced on site by a salt-iron process. The properties of the Al 6061 alloy as particle inclusions of TiB₂ can be further improved. A comparison of the mechanical properties and microstructure of the Al 6061 alloy with the Al-TiB₂ metallic matrix composite with 12% by weight of TiB_{2p} by in-situ method is presented.

Key Words: Al 6061 alloy, Al-TiB₂ Metal matrix Composite (MMC), Aluminium MatrixComposite

(AMC)

1. INTRODUCTION

Al alloy Al 6061 is widely used in many engineering applications such as transportation and construction where good mechanical properties such as tensile strength and hardness are strictly required. The typical chemical composition of Al 6061 is shown in Table 1. Its excellent corrosion resistance makes it a suitable candidate material for structural applications in shipbuilding. The demand for lightweight, cost-effective, and high-performance materials used in a variety of structural and nonstructural applications has created a need for the production of various types of metal matrix composites (MMCs).

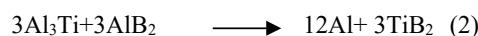
Table1.ChemicalcompositionofAl6061.

Element	Mg	Fe	Si	Cu	Mn	V	Ti	Al
Weight%	1.08	0.17	0.63	0.32	0.52	0.01	0.02	Remainder

In recent years, aluminum alloy-based MMCs have offered designers many additional advantages, as they are particularly suitable for applications requiring good high-temperature strength, good structural stiffness, dimensional stability, light weight, and low thermal expansion. [1-6]. The main benefits of aluminum matrix composites (AMC) include increased strength, increased stiffness, reduced density, improved high temperature properties, controlled coefficient of thermal expansion, thermal/thermal management, improved and tuned electrical performance, Improved wear and abrasion resistance, as well as improved damping capacity [7, 8th]. One such MMC is Al-TiB_{2p}, which contains TiB₂ as the dispersed second phase particles. When a molten metal or other liquid phase containing dispersed second phase particles solidifies, interactions occur between the particles and the advancing solidification front. Such interactions also influence front morphology and particle coagulation. The coagulation front pushes out or swallows particles. Therefore, particles can reside at grain boundaries, interdendritic regions, or within the primary particles themselves. This

phenomenon occurs in many coagulation processes and has also been observed by others [9, 10]. The influence of particulate silicon carbide on the mechanical behavior of Al 6061 MMC was previously studied by T.S. Shrivatsan et al. al., [11]. The TiB₂ particles formed by the in situ reaction process were found to stick together and form aggregates. Feng and Froyen also reported similar findings when AMC was prepared using commercially available pure Al as the matrix [12]. In situ generation of studied AMCs has been widely reported in the literature [12, 13]. However, there are not many reports on the fabrication of AMC using Al 6061 as the matrix alloy and TiB_{2p} as the composite material. The purpose of this study is to compare the mechanical properties and microstructure of cast Al 6061 alloy with those of aluminum MMC containing 12 wt% TiB_{2p}.

2. EXPERIMENTAL PROCEDURE


Composite Fabrication

Due to the various advantages mentioned above, as-cast Al 6061 alloy was used in this study. The AMC

in this study consists of 12 wt% TiB₂ particles in an Al 6061 matrix.

(hereafter referred to as Al 6061/TiB₂/12p) was prepared by an in-situ process involving a salt-metal reaction between titanium-containing K₂TiF₆ and boron at his Department of Mechanical Engineering, CSI College of Engineering, Ooty, South India. In the in situ reaction process, the two salt elements Ti and B mentioned above are introduced into the aluminum melt and react there.

Since the salts are stoichiometrically mixed to form TiB₂, TiB₂ is the only intermetallic phase formed by the reaction. The reaction scheme used to form the composite material is shown below.

Aluminum rods were melted in an electric resistance furnace using a graphite clay crucible. The melt was brought to a temperature of 840°C. The premixed salt was then added to the molten aluminum alloy and thoroughly stirred every 10 minutes using a graphite rod. The total reaction time allowed at the aforementioned temperatures was 1 h, after which the melt was poured into a cast iron mold to cast rectangular composite panels with size 10 cm x 25 cm as shown in Figure 1. Samples were prepared from cast composite panels to carry out studies to evaluate the metallurgical and mechanical properties.

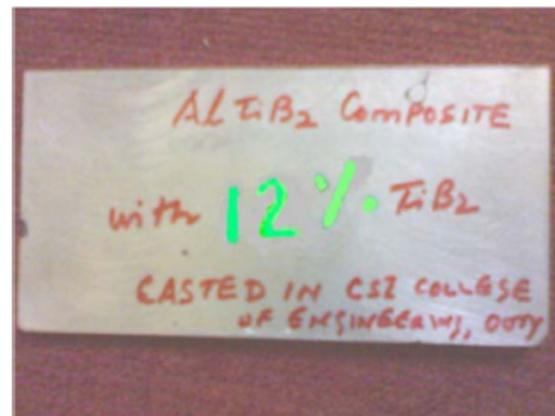
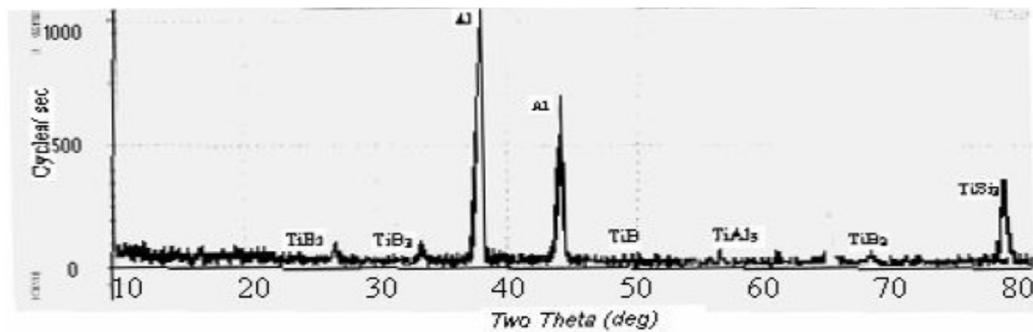
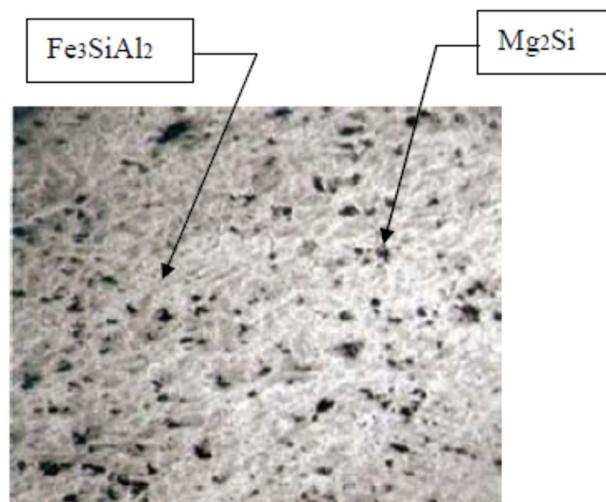
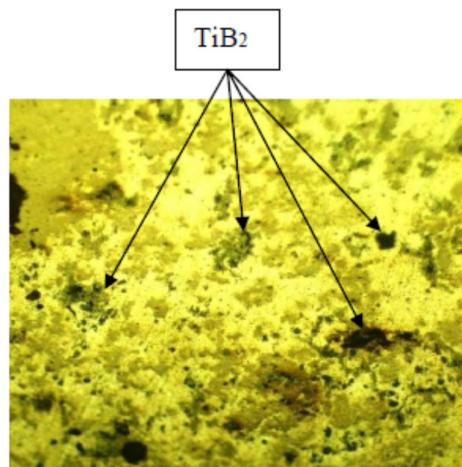


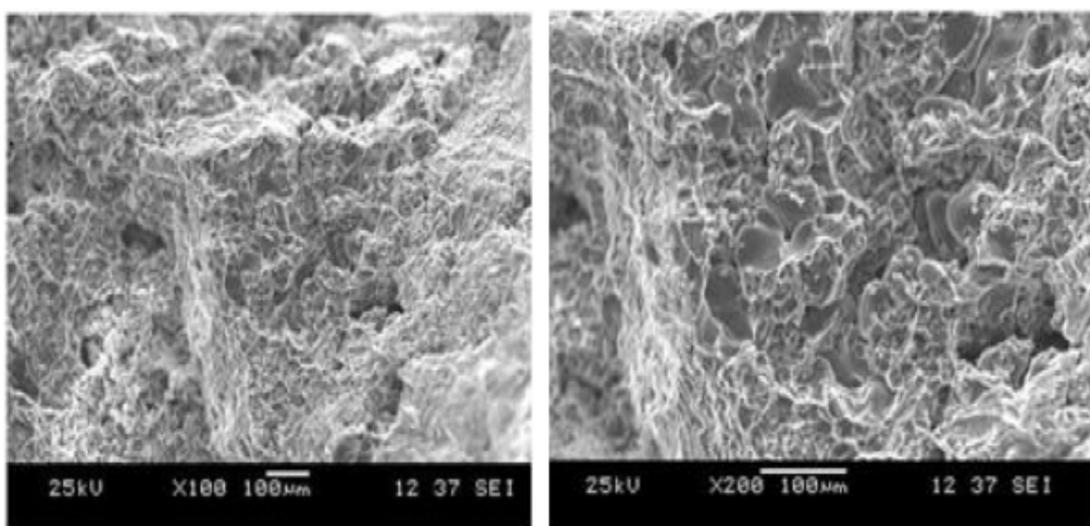
Figure1. Casted Composite Plate

Characterization of 6061 Al alloy and Al-TiB₂ Composite

Figure 2 shows the X-ray diffraction pattern of the composite material, indicating the presence of TiB₂. Optical microscopy examination was performed on both aluminum alloy 6061 and Al MMC.

Use standard metallographic processes. The etchant used was a 0.5% by volume HF aqueous solution. Micrographs taken from above are shown in Figures 3 and 4. The morphology and microstructure of the prepared Al-TiB₂ composites as well as the fracture surface of the tensile test samples were observed with a scanning electron microscope (Joel JSM 6360) using Cu-K α radiation. The scanning electron micrograph and the created fractograph are shown in the figure. 5-7. The Brinell hardness at room temperature was measured at six locations on the top of the composite material, and the average is shown in Table 2. Six tensile test samples prepared according to the ASTM-E08 standard were tested. The average values of the obtained tensile strengths are also shown in Table 2.


Figure2. X-ray diffraction pattern of the composite.

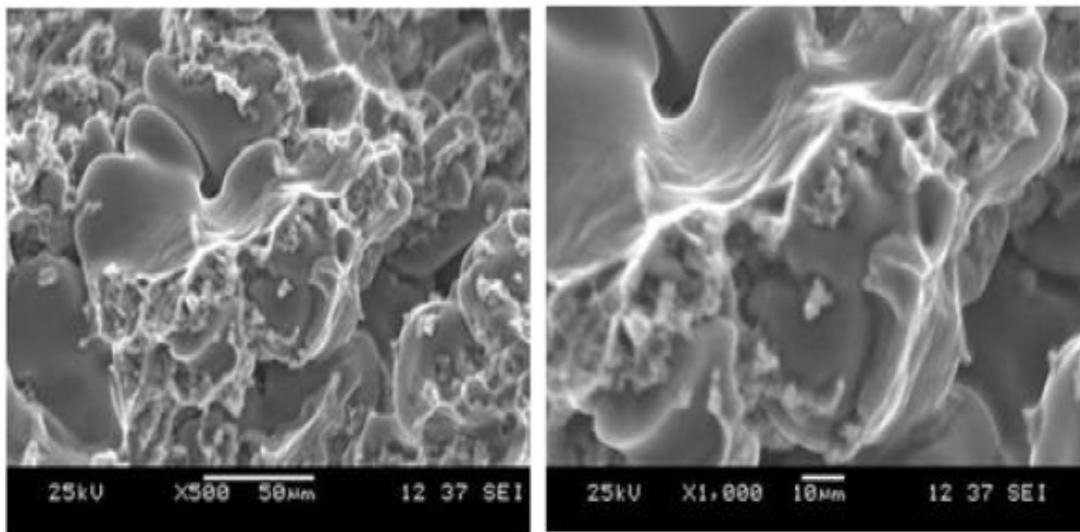


Figure 3. Optical Photomicrograph of Al6061alloy

Figure 4. Optical Photomicrograph of Al-TiB₂composite

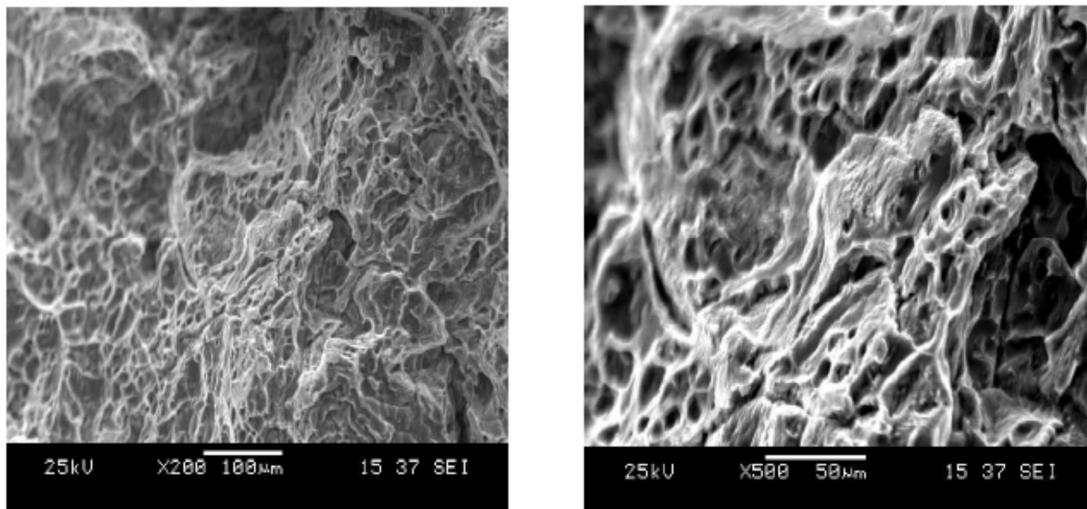


Figure 5. Scanning Electron Micrographs of the Al-TiB₂ composite formed through the 'in-situ' reaction.

Table 2. Hardness and Tensile Properties.

Material	Hardness(BHN)	Tensile Strength(MPa)	Young's Modulus(GPa)	% Elongation
Al-6061 (ascast)	62.8	134.8	79.8	8.0
Al-TiB _{2p}	88.6	173.6	94.2	7.0

Tensile Fracture

Figure 6 : SEM Fractographs of A16061

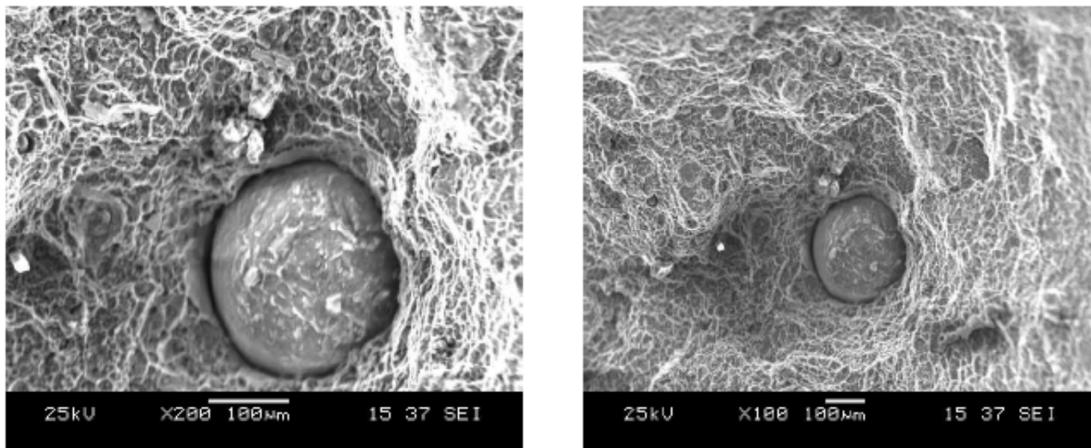


Figure 7. SEM Fractographs of Al-TiB₂Composite.

RESULTS AND DISCUSSION

Microstructure Characterization

The X-ray diffraction pattern of the composite shown in Figure 2 shows that the composite is composed of aluminum and TiB₂ as well as trace amounts of TiAl₃, TiB, and TiSi₂. The presence of TiSi₂ is mainly due to the use of graphite clay crucibles and the resulting silicon contamination.

clay [14]. Since the two salts K₂TiF₆ and KBF₄ are stoichiometrically mixed to form TiB₂, TiB₂ is the main intermetallic compound formed by the reaction. This is also confirmed by XRD analysis.

Figure 3 shows that the microstructure of the 6061 aluminum alloy matrix contains Mg₂Si particles (black) and Fe₃SiAl₂ particles (gray). Optical microscopy of the composite shows the presence of reinforcing particles in the form of clusters. From Figure 4, it can be seen that the discontinuous TiB_{2p} reinforcing phases with non-uniform size and irregular shape are randomly distributed in the aluminum alloy matrix. Agglomeration or clustering of his TiB_{2p} reinforcements of different sizes and shapes is observed, resulting in particle-rich and particle-poor regions. The agglomeration sites are characterized by uniformly small and irregularly shaped particles mixed with larger TiB_{2p} of various sizes. In addition to the presence of reinforcing TiB_{2p}, the alloy is enriched with coarse insoluble iron-rich and silicon-rich constituent particles, indicating the presence of impurity elements. H. Iron and silicon can be attributed to aluminum alloys.

The TiB₂ particles formed by the in situ reaction process were found to stick together and form aggregates. The tendency of TiB₂ particles to form clusters in the Al-TiB₂ system was found to be very pronounced, as reported by Jha and Dometakis [14]. This study also revealed that cluster formation of TiB₂ particles in the Al matrix is important. The

cause of cluster formation is still not clearly understood. Many theories proposed so far suggest that contamination of the TiB₂ particle surface is responsible for cluster formation. Reactive elements (such as potassium) from Al₃Ti [15], magnesium [14], and residual salts [15] have been suggested as possible surface-active substances. It has also been suggested that particles move through the oxide film and form clusters [17]. The holding temperature was maintained at 840 °C in this experiment, as it has been reported that the change in the microstructure of composites with increasing holding temperature is negligible [12].

Improved Mechanical Properties in the Composite

From Table 2, it can be seen that the composite material has higher hardness than the aluminum alloy. The table also shows that the composite material has a higher tensile strength than the reduced ductility 6061 aluminum alloy. The significant improvement in the mechanical properties of the composites compared to aluminum alloys is due to the distribution of TiB₂ particles in the matrix.

Figures 6 and 7 show scanning electron micrographs of the fracture surfaces of the samples. The voids shown in the figure are where the reinforcing particles were located within the matrix. In general, MMC often behaves asymmetrically in tension and compression, resulting in higher tensile strengths but lower proportionality limits than monolithic alloys. This behavior of composite materials is related to the factors that determine the plasticity of the matrix and can be divided into two areas: those that affect the stress rate of the matrix, and those that affect the flow properties of the matrix through microstructural changes. You can separate it. This occurs due to the installation of reinforcement

CONCLUSIONS

- [1] Al-6061/TiB2/12p composite was successfully prepared by in situ reaction method. Both threads and particle aggregates were present as distinct microstructural features of the composites.
- [2] The prepared Al-TiB2 composite had higher hardness, tensile strength, and elastic modulus values than the base alloy.
- [3] The ductility of the composite material was found to be slightly lower than that of aluminum alloy 6061.

ACKNOWLEDGEMENTS

The authors would like to thank the Indian Naval Research Board, Defense Research and Development Organization, New Delhi for financial support for this research. We would also like to thank Mr. Prakash, our chemistry lecturer at his CSI Institute of Technology, Ooty, South India, for providing all the physical facilities, the university administration and the staff of the Department of Mechanical Engineering.

REFERENCES

- [1] Sharma, S.C., Girish,B., Kamath, R., and Sathish, B.M., (1999) Fractography, Fluidity and Tensile Properties of Aluminium/ Hematite Particle Composite, Journal of Materials Engineering Performance, **8**(3):309-314.
- [2] Sharma, S.C., Seah, K.H.W., Sathish B.M., and Ginish, B.M. (1996) Effect of Short Glass Fibers on Mechanical Properties of Cast Al6061Alloy Composites, Material Design, **17**(5/6): 245-250.
- [3] Sharma, S.C. (2000) Albite Particles on the Co-efficient of Thermal Expansion Behavior of the Al6061alloy Composites, Metallurgical & Materials Transaction **A31**: 773-780.
- [4] Tjong, S.C., and Ma, Z.Y. The High-Temperature Creep Behavior of Al Matrix Composites reinforced with SiC, Al₂O₃ and TiB₂ Particles, Composite Science Technology, **57**(197): 697-702.
- [5] Akbulut, H., Durman, M., and Yilmaz, F.,(1998) Higher Temperature Young's Modulus of Aluminium Short Fiber Reinforced Al-SiCMMCs Produced by Liquid Infiltration, Composite Science Technology, **14**:299-305.
- [6] SeahK. H.W., Sharma, S.C., and Krishna, M., (March 2006) Damping Behavior of Al6061/ Albite MMCs, Journal of ASTM International, **3** (3)Paper ID5A1 12394
- [7] Bishop, J.E., and Kinar, V.K.,(1995) Anlaysis of Electro Thermodynamic Dampingin Particle-Reinforced Metal Matrix Composites, Mcfall-Metallurgical Transaction A, **26**(a):2773-2782.
- [8] Surappa M. K., (Feb/April2003) Aluminium Matrix Composites: Challenge and Opportunities, Sadhana, **28** (Part1&2): 319-334.
- [9] Y. M. Yousef, R.J. Dashwood, P.D. Lee. (2005), Effect of Clustering on Particle Pushing and Solidification Behaviourin TiB₂ Reinforced AlPMMCs, Composites **36**(A):747-763.
- [10] Morteson. A., Jin,(1992) Solidification Processing of MMCs, International MaterialRev.**37**(3):101-2820.
- [11] SrivatsanT.S.,Meslet Al- Hajai, B. Hottonand P. C. Larn.,(2002) Effect of Particulate Silicon Carbideon Cyclic Plastic Strain Response and Fracture Behaviour of 6061Aluminumalloy MMC, Applied Composite Materials, **9**: 131-153.
- [12] Feng C.F., Froyen, L., (2000) Microstructure of in-situ Al/TiB₂ MMCs Prepared by a CastingRoute, Journal of Material Sciences **35**: 837-850.
- [13] Yuyoungchen, Chung, D.D.L.(1996),In-Situ Al-TiB2Composite Obtained by Stir Casting, Journal of Material science **31**:311-315.
- [14] Jha. A., Dometakis. C. (1997), The Dispersion Mechanism of TiB₂ Ceramic Phase in Molten Aluminiumand its Alloys, Material Design **18**(4):297-301.
- [15] Schumacher. P.,Greer. Al.(1996), High-resolution TEM of Grain-retaining ParticlesinAmorphousAluminium Alloys, Proceedings of the International Conference on Light Metals, Warrendale, PA- Minerals, Metals and Materials Society/AIME:pp.745-53.
- [16] Forster. (2002), Manufacturing Centrifugal Casting of an Al-TiB₂ Composite, Ph.D. Thesis. Imperial College, London.
- [17] Kennedy. A R., Wyayy. SM., (2000) Effect of Processing on the Mechanical Properties and Interfacial Strength of Aluminium TiC MMCs, Composite Science Technology **60**(2): 307-14.

