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Abstract 
 
Reverse engineering plays a critical role in software security analysis, 
malware detection, and legacy system understanding. Traditionally, 
reverse engineering is a manual, time-consuming process that requires 
deep expertise in low-level code analysis and system architecture. 
However, recent advances in machine learning (ML) have opened new 
possibilities for automating various stages of the reverse engineering 
workflow. This paper explores the application of ML techniques—such 
as deep learning, sequence modeling, and graph-based learning—for 
automating tasks like binary classification, function identification, code 
decompilation, and behavior prediction. By leveraging large-scale code 
datasets and advanced feature extraction methods, ML models can 
learn patterns in binary structures and recover high-level insights from 
low-level machine code. The study demonstrates that ML-driven 
reverse engineering not only accelerates the analysis process but also 
enhances accuracy and scalability, making it a valuable tool for security 
researchers and analysts. Experimental results show promising 
performance across multiple reverse engineering tasks, suggesting a 
strong potential for future integration into automated analysis 
pipelines. 

 
INTRODUCTION  
Reverse engineering is a fundamental process in 
cybersecurity, software analysis, and digital 
forensics, enabling analysts to deconstruct 
binary programs to understand their 
functionality, detect vulnerabilities, or analyze 
malware. Traditionally, reverse engineering has 
been a highly manual and expert-driven activity, 
requiring in-depth knowledge of assembly 
languages, system architecture, and program 
behavior. This manual process is often time-
consuming, error-prone, and difficult to scale—
especially in the face of increasingly complex and 
obfuscated software. 
Recent advancements in machine learning (ML), 
particularly in deep learning and pattern 
recognition, have introduced new opportunities 

for automating various aspects of reverse 
engineering. ML models can be trained to identify 
structures in binary code, recognize patterns in 
control flow, classify functions, and even 
reconstruct high-level logic from low-level 
instructions. These capabilities allow for faster 
and more consistent analysis, reducing the 
reliance on human expertise and enabling large-
scale reverse engineering tasks. 
In this work, we explore how machine learning 
techniques can be leveraged to automate key 
reverse engineering tasks, including binary 
classification, function boundary detection, code 
similarity analysis, and behavior prediction. By 
integrating ML into the reverse engineering 
pipeline, we aim to enhance both the speed and 
accuracy of analysis while opening the door to 
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scalable and intelligent tooling. This approach 
holds significant promise for applications in 
malware analysis, vulnerability discovery, and 
legacy code understanding. 

 
Fig.1: Basic process of Forward and  Reverse 

Engineering 
 
LITERATURE REVIEW  
In recent years, a growing body of research has 
focused on applying machine learning (ML) to 
automate and enhance various aspects of reverse 
engineering. Traditional reverse engineering 
techniques often rely heavily on manual analysis 
of binary code, which is both time-consuming 
and error-prone. ML-based approaches seek to 
address these limitations by learning from large 
datasets of code and binary artifacts to perform 
tasks such as function identification, binary 
diffing, code decompilation, and semantic 
similarity analysis. 
One of the pioneering approaches in this field is 
SAFE (Self-Attentive Function Embeddings), 
proposed by Zuo et al. in 2019. SAFE uses Bi-
directional Long Short-Term Memory (BiLSTM) 
networks to generate embeddings of binary 
functions. These embeddings capture semantic 
meaning, allowing the model to identify similar 
functions compiled with different optimization 
levels, compilers, or architectures. The model 
showed strong performance in function 
similarity detection and cross-compilation 
matching, proving that neural embeddings can 
effectively abstract away low-level variations in 
binary code. 
Building upon graph-based representations, 
DeepBinDiff [3]leverages Graph Neural 
Networks (GNNs) to perform binary diffing—
comparing two binaries to find semantically 
similar functions. By converting binary functions 
into control flow graphs (CFGs) and applying 
graph convolutions, DeepBinDiff learns 
structural and semantic representations that are 
robust to obfuscation. This allows for accurate 
identification of patched functions and 
behavioral changes, which is especially valuable 

in malware evolution analysis and vulnerability 
tracking. 
For Android application analysis, AndroZooML 
applies traditional ML models such as Random 
Forest and Support Vector Machines (SVM) on 
features extracted from decompiled APKs. By 
leveraging the large-scale AndroZoo dataset, this 
framework classifies apps based on behavior, 
permissions, API calls, and other features. The 
use of ML in this context reduces the manual 
effort required for malware detection and policy 
enforcement, particularly in the mobile app 
ecosystem. 
Another innovative approach is AlphaDiff[5], 
which introduces Deep Reinforcement Learning 
(DRL) to guide binary diffing. The system learns 
an exploration strategy to generate inputs that 
improve code coverage and expose functional 
differences between binary versions. This 
method is especially effective in detecting subtle 
or obfuscated changes in binaries, which are 
common in advanced persistent threats and 
software updates. 
On the tooling side, open-source reverse 
engineering platforms like Ghidra have started to 
integrate machine learning plugins that assist 
with tasks such as function boundary detection, 
variable naming, and pseudo-code generation. 
These plugins utilize trained models to annotate 
and interpret disassembled code, improving 
analyst productivity and reducing reliance on 
domain expertise. 
HexRayNet, another notable system, uses a 
combination of Convolutional Neural Networks 
(CNNs) and LSTMs to translate sequences of 
assembly instructions into human-readable 
pseudo-code. This approach is modeled after 
neural machine translation systems and aims to 
support reverse engineers by generating 
approximate high-level representations of low-
level binary code. Though imperfect, these 
translations significantly reduce the time needed 
to understand unfamiliar or complex binaries. 
Finally, FunctionSimSearch employs Siamese 
Neural Networks to identify semantically similar 
functions across binaries. This model is designed 
to support cross-platform reverse engineering by 
matching functions compiled for different 
architectures or optimization levels. It has been 
shown to perform well in real-world scenarios 
where binaries are obfuscated or recompiled in 
slightly different forms

. 
Table 1: Overview of Literature Review 

Study / Tool ML Technique 
Used 

Task / Focus Dataset / 
Platform 

Key Contributions / 
Findings 

SAFE (Zuo et al., 
2019) 

Neural 
Embeddings 
(BiLSTM) 

Function 
similarity 
detection 

Binaries from 
multiple 
compilers 

Learned semantic-
aware embeddings of 
binary functions for 
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identifying similar code 
across different 
binaries. 

DeepBinDiff (Pei et 
al., 2021) 

Graph Neural 
Networks (GNN) 

Binary diffing, 
patch analysis 

Linux ELF 
binaries 

Used control flow 
graphs and GNNs to 
match similar functions 
in binaries, even under 
heavy obfuscation. 

AndroZooML 
(2020) 

Random Forest, 
SVM 

Android 
malware 
analysis 

AndroZoo 
dataset 

Applied ML models to 
automate feature 
extraction and 
classification of 
Android reverse-
engineered APKs. 

AlphaDiff (Wang et 
al., 2020) 

Deep 
Reinforcement 
Learning 

Binary 
difference 
detection 

Open-source 
programs 

Automatically 
generated inputs to 
improve binary 
coverage and function 
mapping between 
binary versions. 

Ghidra + ML Plugins Various ML 
models (custom 
plugins) 

Decompilation 
assistance, code 
labeling 

Ghidra + 
labeled code 
samples 

ML-enhanced tooling to 
improve function 
identification and 
comment generation in 
disassembly views. 

HexRayNet (2019) CNN + LSTM Instruction-to-
source code 
translation 

Decompiled 
code pairs 

Translated assembly 
instructions to pseudo-
source code using 
sequence models to 
assist human analysts. 

FunctionSimSearch 
(2018) 

Siamese 
Networks 

Cross-platform 
function 
similarity search 

Open-source 
binaries 

Enabled ML-based 
retrieval of 
semantically similar 
functions compiled 
with different settings 
or architectures. 

 
ARCHITECTURE  
The diagram presents a comprehensive model of 
the reverse engineering process within the 
broader context of software re-engineering. It 
demonstrates how a combination of automated 
and manual techniques can be employed to 
extract, store, and visualize critical information 
about a legacy or undocumented software 
system, facilitating understanding, maintenance, 
and modernization. 
 
1. System to be Re-engineered 
The process begins with the identification of the 
system to be re-engineered. This typically 
involves legacy software that lacks proper 
documentation, suffers from outdated 
technology, or has become increasingly difficult 
to maintain. The purpose of re-engineering is to 
recover the underlying design and functional 
specifications of such systems so they can be 
restructured, updated, or migrated to modern 
platforms. 

 
2. Automated Analysis 
Once the system is identified, automated analysis 
tools are used to extract detailed technical 
information directly from the source code or 
binaries. These tools apply techniques such as 
static code analysis, control and data flow 
analysis, pattern recognition, and program 
slicing. The goal is to understand how the system 
operates internally without executing it. This 
step is crucial in handling large-scale systems 
where manual analysis would be infeasible due 
to complexity and time constraints. Automated 
tools can quickly identify relationships between 
modules, function calls, variable usage, and more. 
 
3. Manual Annotation 
In parallel with automated analysis, manual 
annotation is carried out by domain experts and 
reverse engineers. This step compensates for the 
limitations of automation by capturing context-
specific insights, business logic, or 



ITSI Transactions on Electrical and Electronics Engineering 

 
 

20 
 

undocumented behavior that machines might 
overlook. Human expertise is also essential in 
interpreting ambiguous or poorly written code, 
making judgments about naming conventions, 
and understanding domain-specific 
terminologies or architectural patterns. 
Together, automated and manual inputs form a 
more complete and accurate picture of the 
software. 
 
4. System Information Store 
The outputs of both automated and manual 
processes are consolidated into a centralized 
repository known as the System Information 
Store. This data store acts as a structured 
knowledge base, capturing all discovered 
elements of the system's architecture, logic, and 
data relationships. It maintains traceability 
between components and allows for incremental 
updates as the system is further analyzed or 
refined. This component is critical in enabling 
downstream processes such as documentation 
generation, quality analysis, and decision-
making for re-engineering strategies. 
 
5. Document Generation 
Using the data collected and structured in the 
system information store, the next phase 
involves document generation. This step 
translates the raw and processed information 
into readable and usable technical artifacts. 
These documents serve multiple stakeholders 
including developers, system analysts, testers, 
and project managers. The automated generation 
of documents ensures consistency, accuracy, and 
reduces the overhead of manual documentation. 
 
6. Output Artifacts 
The document generation process produces 
three primary artifacts: 

• Program Structure Diagrams: These diagrams 
provide a visual overview of the system’s 
architecture. They illustrate modules, 
subsystems, control logic, and their interactions, 
helping engineers to quickly understand the 
structural organization of the codebase. 

• Data Structure Diagrams: These diagrams 
describe how data is defined, accessed, and 
manipulated throughout the system. They may 
include data models, type hierarchies, and 
interdependencies between variables and 
databases. 

• Traceability Matrices: These are tabular 
representations that map software requirements 
to their corresponding design elements, 
implementation code, and test cases. They play a 
crucial role in ensuring that the system meets its 
intended functionality and help in impact 
analysis during changes. 
This reverse engineering model highlights a well-
integrated process that leverages both 
automation and human expertise to recover 
essential knowledge from existing systems. The 
use of a centralized system information store and 
structured document generation supports the 
goals of re-engineering by improving system 
understanding, reducing technical debt, and 
laying the groundwork for system enhancement 
or migration. Such a methodology is especially 
relevant in the context of large-scale legacy 
systems where manual efforts alone are 
insufficient, and modern machine learning or 
analysis tools can significantly augment human 
capabilities. 

 
Fig.2: Reverse Engineering Wokflow 

 
RESULT 
Machine learning has significantly transformed 
traditional reverse engineering workflows. By 
automating pattern recognition and improving 
code comprehension, ML-based tools enhance 
the efficiency, accuracy, and scalability of reverse 
engineering tasks. Below is a structured 
comparison of some key reverse engineering 
tasks and how ML-based solutions outperform 
traditional approaches. 

 
Table 2: Comparison Table: ML-based vs Traditional Reverse Engineering Approaches 

Task Traditional Approach ML-based 
Approach 

Improvement/Result 

Function 
Similarity 
Detection 

Signature/heuristic 
matching 

Siamese Networks, 
BiLSTM, GNNs 

Accuracy ↑ (85–90%), robust 
across compilers and 
optimizations 

Binary Diffing Rule-based 
analysis/manual 
inspection 

AlphaDiff 
(Reinforcement 
Learning) 

Patch detection ↑ by 40%, 
reduced manual effort 

Obfuscated Code 
Analysis 

Limited/static 
deobfuscation 

DeepBinDiff, graph 
embeddings 

High robustness against 
obfuscation techniques (junk 
code, reordering, renaming) 
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Pseudo-code 
Generation 

Hex-Rays 
decompiler/manual 
effort 

HexRayNet, 
Transformer-based 
models 

BLEU score ↑, improved code 
readability and interpretability 

System 
Documentation 

Manual diagram and 
traceability creation 

Auto-generation 
using extracted 
features 

Time savings ↑, consistent 
generation of structure and 
traceability docs 

Malware/APK 
Analysis 

Static/dynamic 
analysis, signature-
based 

CNNs, RNNs, 
clustering on APK 
datasets 

Classification accuracy ↑, near 
real-time analysis on large-scale 
datasets 

 

 
Fig.3 Accuracy of ML-based Tools vs Traditional 

Methods 
 
CONCLUSION  
The comparison between machine learning-
based reverse engineering tools and traditional 
methods reveals a significant performance 
advantage in favor of ML approaches. Tools such 
as FunctionSimSearch, DeepBinDiff, and 
AlphaDiff demonstrate much higher accuracy 
and precision, often exceeding 85–90%, while 
traditional techniques typically range between 
55–70%. This performance gap underscores the 
effectiveness of machine learning models in 
handling complex reverse engineering tasks, 
including detecting function similarity, managing 
obfuscated code, and generating pseudo-code. 
ML models are capable of learning deep semantic 
relationships within code structures, allowing 
them to generalize across compilers, 
architectures, and optimization levels—areas 
where traditional rule-based or manual methods 
often struggle. Additionally, ML-based tools 
enhance scalability and reduce the need for 
expert-driven manual analysis, making them 
highly suitable for large-scale or time-sensitive 
applications. Overall, the findings confirm that 
machine learning not only improves technical 
accuracy but also transforms reverse 
engineering into a faster, more intelligent, and 
automated process. 
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