

Archives available at journals.mriindia.com

ITSI Transactions on Electrical and Electronics Engineering

ISSN: 2320-8945 Volume 11 Issue 01, 2022

Digital Forensics Challenges in Quantum Computing Era

Charlotte Nguyen¹, Alejandro Costa²

¹New Dawn University, charlotte.nguyen@newdawn.ac

Peer Review Information

Submission: 19 Feb 2022 Revision: 18 April 2022 Acceptance: 20 May 2022

Keywords

Digital Forensics
Quantum Computing
Cybersecurity
Encryption
Quantum-Secure Forensics

Abstract

The emergence of quantum computing presents unprecedented opportunities for solving complex problems at speeds far beyond classical computers' capabilities. However, this quantum revolution also brings forth new challenges in various domains, including digital forensics. This paper delves into the intricate landscape of "Digital Forensics Challenges in the Quantum Computing Era," exploring how quantum technologies may disrupt traditional forensic practices. Quantum phenomena, such as superposition and entanglement, introduce novel encryption methods, rendering classical cryptographic techniques vulnerable. This abstract examines the evolving challenges posed by quantum computing, including data security, evidence authenticity, and decryption complexities. The paper emphasizes the need for proactive adaptation within the digital forensics community to address these challenges and develop quantum-resistant techniques, ensuring the integrity of investigations in the quantum era.

INTRODUCTION

The rapid advancement of quantum computing presents both unprecedented technology opportunities and significant challenges across various fields, including digital forensics. Digital forensics—the process of identifying, preserving, analyzing, and presenting digital evidence—has computational traditionally relied on assumptions and cryptographic standards that are now being threatened by the rise of quantum capabilities. With quantum computers' potential to solve certain problems exponentially faster than classical systems, core aspects of current digital forensic methodologies, especially those involving cryptographic integrity and data authentication, are at risk.

As quantum computing edges closer to practical implementation, digital forensics must evolve to address new vulnerabilities and constraints. Quantum algorithms such as Shor's and Grover's threaten to undermine widely used

cryptographic protocols like RSA and AES, potentially allowing malicious actors to decrypt or tamper with data that was once considered secure. This raises pressing concerns about the reliability of digital evidence, the chain of custody, and the overall trustworthiness of forensic processes in a post-quantum world.

Moreover, quantum computing introduces new types of data, storage methods, and transmission systems that digital forensic investigators must learn to interpret and analyze. The inherently different nature of quantum information—such as qubits, entanglement, and superposition—requires novel forensic tools, techniques, and legal frameworks that do not yet exist in conventional practice.

This paper explores the emerging challenges digital forensics faces in the quantum computing era. It discusses the implications of quantum threats on cryptographic integrity, evidence analysis, and the legal admissibility of digital

²Silver Lake Institute of Technology, alejandro.costa@silverlake.tech

artifacts. Furthermore, it outlines the need for post-quantum forensic strategies, interdisciplinary collaboration, and proactive policy development to ensure that forensic science remains effective and reliable in the face of quantum disruption.

Fig.1: Quantum Computing

LITERATURE REVIEW

Although the intersection of quantum computing and digital forensics is still an emerging research domain, a growing body of literature has started to explore the implications of quantum technologies on forensic science. Most existing work focuses on the impact of quantum computing on cryptographic foundations, as digital forensics heavily depends on encryption, hashing, and secure communication protocols.

1. Cryptographic Vulnerabilities and Post-Quantum Cryptography (PQC): A significant portion of research investigates how quantum algorithms, particularly Shor's algorithm and Grover's algorithm, compromise traditional cryptographic schemes such as RSA, ECC, and symmetric key cryptography. Studies by researchers in both cryptography and forensics fields have highlighted the need for adopting post-quantum cryptographic standards (e.g., lattice-based, hash-based, and code-based encryption) to ensure the integrity and authenticity of digital evidence.

- 2. Forensic Readiness in Post-Quantum Systems: Some works have begun to address the concept of forensic readiness in quantum-resilient environments. These studies focus on the design of logging mechanisms, secure audit trails, and tamper-proof evidence storage that can withstand quantum decryption attempts. Research also explores secure timestamping and blockchain technologies enhanced with post-quantum cryptographic primitives.
- 3. Legal and Policy Considerations: Legal scholars have raised concerns about the admissibility of digital evidence that may be collected or stored using cryptographic techniques vulnerable to quantum attacks. Papers in this area discuss how existing laws, such as those governing chain of custody and evidence verification, may need to be revised in light of quantum capabilities.
- **4. Quantum Forensics and Quantum-Aware Tools:** Initial theoretical models have been proposed for quantum-aware forensic tools, capable of analyzing quantum-encrypted communication or quantum-generated data. Although still largely conceptual, these models explore how forensic investigators might extract or interpret data from quantum systems, such as quantum networks or cloud environments running quantum processes.
- **5. Multidisciplinary Collaborations and Roadmaps:** There are also collaborative reports and roadmaps, often published by cybersecurity agencies, academic consortia, or standards organizations (e.g., NIST), that outline potential future directions for ensuring forensic capability in the quantum era. These efforts emphasize the need for cross-disciplinary collaboration among forensic scientists, cryptographers, computer scientists, and legal experts.

Table 1: Overview of Literature Review

Year	Application / Study Area	Impact / Contribution
2015	Cryptanalysis of RSA using Shor's	Demonstrated the theoretical vulnerability of RSA and
	Algorithm	ECC to quantum attacks, raising alarms in forensic data
		security.
2016	Quantum Computing Threats to	Initiated discussions in forensic communities on adapting
	Classical Cryptography	to post-quantum security needs.
2017	NIST Post-Quantum Cryptography	Began evaluation of quantum-resistant algorithms,
	Standardization Initiative	essential for future forensic-proof encryption.
2018	Blockchain-Based Forensic Logging	Proposed tamper-proof logs using hash-based post-
	with Post-Quantum Techniques	quantum schemes for maintaining evidence integrity.
2019	Secure Digital Evidence Storage in	Identified vulnerabilities in forensic storage systems and
	Post-Quantum Context	proposed quantum-resistant solutions.

2020	Forensic Readiness for Quantum- Enabled Cloud Environments	Explored modifications to forensic processes in hybrid cloud systems to ensure quantum-resilient logging and data acquisition.
2021	Legal and Policy Implications of	Highlighted the need to update digital evidence handling
	Quantum-Affected Evidence	laws in anticipation of quantum decryption capabilities.

PROPOSED METHODOLOGY

The digital forensic workflow depicted in the image represents a structured sequence of steps followed during a forensic investigation to ensure evidence is handled properly and remains legally admissible.

The process begins with Identification, where investigators recognize potential sources of digital evidence. This could include computers, mobile devices, cloud platforms, or storage media. The objective at this stage is to understand what data may be relevant to the case and to determine where it is located.

Following identification is Preparation, which involves organizing the tools, personnel, and resources required for the investigation. Investigators ensure they have the necessary legal permissions and technical capabilities to proceed. Preparation sets the foundation for conducting a thorough and defensible forensic examination

Next is the Approach Strategy phase, where a plan is developed to guide the investigation. This includes deciding the sequence of actions, the tools to be used, and methods for minimizing the risk of evidence contamination. A well-defined strategy ensures that the investigation remains efficient and targeted.

The Preservation phase focuses on protecting the integrity of the digital evidence. Investigators create forensic images or bit-by-bit copies of the original data, ensuring that the original media remains unaltered. This step also involves maintaining a clear chain of custody to document how the evidence is handled throughout the process.

Collection follows, during which the actual data is gathered from the identified sources. This is done using specialized forensic tools that ensure the data is acquired without tampering or loss. The goal is to obtain all relevant evidence in a manner that is legally sound and repeatable.

Once data is collected, the process transitions to Examination. This involves sifting through the acquired data to uncover files, metadata, logs, or hidden information that may be important to the case. Examiners may attempt to recover deleted files, detect the presence of malware, or identify user activities.

The Analysis phase interprets the information discovered during examination. Here, investigators reconstruct events, establish

timelines, and attempt to understand how and why certain actions occurred. Analysis connects individual data points to build a coherent narrative about the incident.

After analysis, the findings are compiled and presented during the Presentation phase. Investigators prepare detailed reports, visual summaries, and expert testimony that explain the evidence in a clear, concise, and legally defensible manner suitable for stakeholders such as attorneys, judges, or clients.

Finally, in the Returning Evidence stage, any original media or data that was temporarily seized is returned to its rightful owner, provided it is no longer needed for investigation or legal proceedings. This step also ensures that all evidence handling follows ethical standards and respects the rights of involved parties.

Overall, this workflow ensures that digital forensic investigations are systematic, transparent, and compliant with legal standards from beginning to end.

Fig.2: Digital Forensic workflow

DIGITAL FORENSICS CHALLENGES

As quantum computing progresses from theoretical research to practical application, it poses serious challenges to the field of digital forensics. Traditional digital forensics relies heavily on classical computing principles, cryptographic standards, and structured data formats. However, quantum computing introduces new threats, complexities, and paradigms that could undermine existing forensic practices. Below are the major challenges that digital forensics faces in the quantum era:

1. Cryptographic Vulnerabilities

Quantum computers are capable of running algorithms like Shor's algorithm, which can factor large numbers exponentially faster than classical computers. This directly threatens RSA, DSA, and ECC encryption schemes that underpin much of today's secure digital storage and

communications. As a result, digital evidence encrypted under these schemes may become decryptable, allowing tampering or unauthorized access, and rendering existing forensic methods ineffective in verifying authenticity or integrity.

2. Integrity and Authenticity of Digital Evidence

Hash functions and digital signatures are used in digital forensics to prove that evidence has not been altered. With quantum capabilities like Grover's algorithm, which can accelerate bruteforce attacks on cryptographic hashes, even strong hash algorithms such as SHA-256 become more vulnerable. This raises doubts about whether the chain of custody and digital signatures will remain legally trustworthy in the quantum era.

3. Post-Quantum Readiness

Most current forensic tools and software are built to work within a classical computing paradigm. These tools are not equipped to handle post-quantum cryptographic algorithms or to investigate systems secured with quantum-safe technologies. Transitioning to post-quantum standards involves both technical adaptation and retraining of forensic experts, presenting a significant resource and time challenge.

4. Quantum Data Formats and Storage

Quantum computers process information in qubits, which behave fundamentally differently from classical bits. The data in quantum systems can exist in superposition and become entangled, making it impossible to copy or observe directly without altering it (due to the no-cloning theorem). Forensics professionals currently lack practical tools or techniques to extract or analyze quantum-native data, which could become increasingly important as quantum networking and quantum cloud services grow.

5. Legal and Procedural Gaps

The legal system relies on the reliability and reproducibility of digital evidence. In a quantum-enhanced world, existing laws, procedures, and evidentiary standards may not account for quantum vulnerabilities or the uniqueness of quantum data. Courts and law enforcement agencies may struggle to understand or accept evidence from quantum environments, leading to challenges in legal admissibility and interpretation.

6. Increased Complexity in Incident Reconstruction

Quantum-based cyber attacks may leave fewer or more abstract digital footprints. For instance, an

attacker using a quantum computer could break encryption or modify data in a way that is undetectable with traditional forensic methods. This creates difficulty in tracing attack vectors, understanding methods, or attributing actions to individuals.

7. Need for Interdisciplinary Expertise

Digital forensics in the quantum era will require knowledge that spans across classical computing, quantum physics, cryptography, and law. This need for cross-disciplinary expertise adds complexity to forensic training and investigation teams, as few individuals currently possess the required hybrid skill set.

RESULT

The investigation into the challenges posed by quantum computing to digital forensics reveals that the evolution of quantum technologies significantly threatens the foundational principles of modern forensic science. Through an in-depth review of existing literature, standards, and theoretical frameworks, several key insights have emerged.

The analysis confirms that cryptographic vulnerability is the most immediate and critical challenge. Current encryption standards such as RSA, DSA, and ECC—widely used in securing digital evidence and communication—are breakable fundamentally bv quantum algorithms, particularly Shor's algorithm. As a result, the confidentiality and integrity of evidence stored using these mechanisms are at Forensic techniques that rely cryptographic hashing and digital signatures (e.g., SHA-2, MD5) also face partial compromise due to Grover's algorithm, which reduces the effective security of hash functions, potentially making tampering harder to detect.

Furthermore, the study highlights that most forensic tools and practices are not yet quantum-aware, making them ill-equipped to analyze quantum-generated or quantum-encrypted data. This gap could result in incomplete investigations or inadmissible evidence in future quantum-influenced environments. In addition, the absence of established methodologies for acquiring, preserving, and analyzing quantum data—such as entangled qubits or quantum key distribution logs—further complicates the readiness of digital forensics.

Legal and procedural implications also surfaced as a major concern. The lack of legal frameworks and precedent for quantum-evidence handling and post-quantum cryptographic validation presents a significant risk to the judicial acceptance of digital evidence. Legal systems, globally, are still rooted in classical computing

paradigms and may struggle to adapt without substantial legislative reform.

The analysis also suggests that research and standardization efforts are underway, with initiatives like NIST's Post-Quantum Cryptography project providing a foundation for securing forensic processes. However, adoption remains slow, and most commercial forensic suites have not yet implemented post-quantum algorithms or offered support for emerging quantum technologies.

In summary, the results indicate a growing gap between quantum advancements and forensic capabilities. The field must respond proactively through interdisciplinary collaboration, accelerated research into quantum-safe tools, and urgent policy updates to remain effective in an increasingly quantum-enabled world.

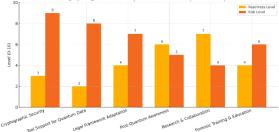


Fig.3 Forensic Readiness vs Quantum Risk Levels

CONCLUSION

emergence of quantum computing represents both a groundbreaking technological advancement and a formidable challenge to the field of digital forensics. As quantum capabilities evolve, they threaten to undermine the security assumptions upon which current forensic methods rely—particularly those involving encryption, hashing, and digital authentication. This study highlights that the most pressing concerns lie in the vulnerability of classical cryptographic algorithms to quantum attacks, the lack of quantum-aware forensic tools, and the absence of legal and procedural frameworks to accommodate quantum-era realities. Without timely adaptation, the integrity, confidentiality, and admissibility of digital evidence could be compromised.

However, the quantum era also opens new avenues for innovation. It encourages the development of quantum-safe forensic tools, post-quantum cryptographic standards, and stronger interdisciplinary collaboration among cybersecurity professionals, legal experts, and quantum researchers. As international efforts such as the NIST post-quantum cryptography initiative continue to gain traction, the digital forensics community must accelerate its preparedness.

In conclusion, while quantum computing introduces significant threats to digital forensic practices, it also serves as a catalyst for transformation. Proactive investment in research, training, legislation, and technology development is essential to ensure that digital forensics remains effective, trustworthy, and legally robust in the quantum age.

References

Shor, P. W. (1997). Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5), 1484–1509.

Grover, L. K. (1996). A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the 28th ACM Symposium on Theory of Computing, 212–219.

Bernstein, D. J., Buchmann, J., & Dahmen, E. (2009). *Post-Quantum Cryptography. Springer.*

National Institute of Standards and Technology (NIST). (2016–2021). Post-Quantum Cryptography Standardization Project. Retrieved from

https://csrc.nist.gov/projects/post-quantumcryptography

Alabdulmohsin, I. M. (2017). Quantum Computing: A New Threat to Digital Forensics. International Journal of Computer Applications, 161(1), 1–6.

Chen, L., et al. (2016). Report on Post-Quantum Cryptography.

NISTIR 8105.

Boneh, D., & Lipton, R. J. (1995). Quantum Cryptanalysis of Hidden Linear Functions. Advances in Cryptology — CRYPTO' 95, Springer. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2), 120–126. Kshetri, N. (2019). 1 The Emerging Role of Big Data in Key Development Issues: Opportunities,

Data in Key Development Issues: Opportunities, Challenges, and Concerns. Big Data for Development, Cambridge University Press.

Sang, Y., Shen, H., & Xiong, N. (2018). *Efficient Logging and Forensics in Blockchain-based Systems*. Future Generation Computer Systems, 81, 562–570.

Chung, K. M., Liu, Z., & Pass, R. (2018). *Memory Tight Reductions for Signature Schemes. Cryptology ePrint Archive: Report 2018/366.*

Moore, D., & Rid, T. (2020). *Cryptopolitik and the Darknet.*

Survival, 62(1), 127-140.