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Abstract 
 

Evaluation of water quality is required for the management of 
water resources and protection of public health. With ever-
increasing pollution due to climate change, it has become 
increasingly challenging to ensure real-time monitoring of the 
water environment quality. Sampling is necessary for manual 
water testing and is very time-consuming, was enabled with the 
setup of IoT sensors. Time-series data generated by the IoT sensors 
will be analyzed and classified in real-time using ML/DL-based 
techniques that can detect even the most subtle nuances in water 
quality parameters such as pH, dissolved oxygen, turbidity, and 
BOD. Besides anomaly detection and real-time decision support, 
these automated systems offer a set of additional features like 
predictive analytics that conventional methods could never 
provide. CPCB (India) and WHO provide regulatory standards that 
are followed as the water quality standards. Transfer Learning for 
data-poor areas, edge computing for real-time analytics, and 
blockchain for data integrity are some of the few high-level 
technology enablers on this front. One significant limitation today 
is the lack of data for water-quality studies besides the real sensor 
reliability and procedural irregularity over various geographical 
regions. Further transformations in water quality monitoring can 
be expected over the horizons of explainable AI and distributed IoT 
networks, enhancing the platform of its accuracy, transparency, 
and scalability for better management of global water resources at 
the end. 

 
INTRODUCTION 
 Water becomes life, economic development, and 
ecosystem health. Of course, clean and safe water 
is an absolute necessity all human beings are 
entitled to. Water quality differs from region to 
region due to natural reasons like the geological 
structure and anthropogenic activities 
comprising industrial discharge, agricultural 
runoffs, or urbanization. Studies reveal that 
water scarcity is a problem faced by roughly four 

billion people worldwide every year [1]. Health 
risks become so severe due to contamination of 
water sources, as waterborne diseases of 
cholera, dysentery, and typhoid will be one 
among them [2]. These problems can be solved 
by proper monitoring and classification systems 
of water quality. Hence in view of such issues, 
there are global bodies who have set up the UN 
Sustainable Development Goal (SDG) 6-Clean 
Water and Sanitation-to guarantee the 
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availability of clean drinking water for all by 
2030 [3]. This goal largely depends on the ability 
to classify water quality accurately in different 
water bodies such as rivers, lakes, and 
groundwater. Water quality classification is the 
process of classifying water on the basis of 
chemical, physical, and biological quantities into 
general categories such as good, poor, or 
drinking water quality. Water classification 
statuses are used to guide regulation and policies 
on public health. 
Traditional water quality assessment methods 
are mostly using water quality indices (WQIs) 
and regulatory schemes for classification. These 
traditional schemes put threshold criteria on a 
few critical parameters such as pH, dissolved 
oxygen, BOD, and coliform counts. For instance, 
the Central Pollution Control Board (CPCB) of 
India classifies a water source as Class A 
(drinking water source) if its pH is between 6.5 
and 8.5, DO is equal to or more than 6 mg/L, and 
total coliform is less than 50 MPN/100mL 
[4].Similarly, to protect drinking-water 
standards, the WHO has prescribed stringent 
limits of 0.01 mg/L for arsenic and 50 mg/L for 
nitrate [5]. These norms are given as regulatory 
guidelines in the interest of public health and 
sustainable environment. 
Water quality monitoring, in past years, has seen 
the Technological Advancements in Paradigm 
Shift. The remains of continuous data collection 
of a water body in real time were enabled with 
the setup of IoT sensors. These low-cost sensors 
can monitor turbidity, pH, and conductivity 
parameters, providing near-instant results to the 
water authorities [6]. In contrast with the 
traditional sampling intermittent measurements 
taken periodically for limited durations, IoT-
enabled sensors work 24/7 for water quality 
monitoring, making real-time water quality 
assessment more granular and accurate. 

 

Fig. 1Water Quality Monitoring System Flow 

 
In this way, ML and DL technologies have 
revolutionized the processing of data on water 
quality classification, with these methods being 
very good at recognizing patterns, spotting 
outliers, and predicting using vast datasets 
collected from sensor networks [7]. Water 
quality is classified into predefined categories 
using SVMs and RFs with supervised learning 
based on historical data. Besides this, a deep 
learning technique, including CNNs and LSTMs, 
is used to strengthen the ability of a system for 
making very subtle pattern detections and 
predictions for the contamination events of the 
near future. 
Fig.1 illustrates the flow of water quality 
monitoring, encompassing key stages from data 
acquisition to decision-making support. 
Additionally, review provides an integrated 
analysis of advancements and challenges in 
water quality classification techniques, 
highlighting emerging technologies and the 
critical role of IoT and machine learning in 
enhancing real-time water monitoring efficiency. 
 In the following sections, we take a look into 
basic water quality parameters and works 
related to the domain in Sections 2–3, then 
contrast traditional classification methods, e.g., 
Water Quality Indices and regulatory thresholds, 
with modern data-driven techniques in Sections 
4–5. Following this, we talk about major 
innovations and challenges that persist in the 
form of insufficient data, sensor reliability, and 
lack of standardized protocols in Section 6.Last 
but not least, promising future applications 
include AI-based analysis, 5G-enabled IoT, and 
blockchain to ensure data integrity, with edge 
computing facilitating real-time processing 
Section 7. This review aims at providing the 
reader with a comprehensive overview of 
current technologies while pointing toward gaps 
and possible developments in global water 
quality monitoring. 
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LITERATURE REVIEW 

Table I.  Research Findings Comparison 

Ref 
No. 

Author(s) 
[Year] 

Title of Paper Result and 
Conclusion 

Research Gap Algorithm Used 

[8] Chang et al. 
[2023] 

Machine Learning 
Approach to IoT-
Based Water 
Quality 
Monitoring 

Achieved high 
accuracy with IoT-
based sensor 
networks and ML 
models; LightGBM 
outperformed ANN 
and RF. 

High cost and 
manual 
sampling in 
traditional 
water 
monitoring 
systems. 

LightGBM, ANN, 
Random Forest 

[9] Paul et al. 
[2023] 

Real-Time 
Monitoring of 
Water Quality for 
Rural Areas: A 
Machine Learning 
and IoT Approach 

IoT sensors 
measured pH and 
turbidity, with 
XGBoost achieving 
95.12% accuracy. 
Enabled real-time 
water 
classification. 

Lack of real-
time 
monitoring in 
rural water 
systems. 

SVM, Random 
Forest, XGBoost 

[10
] 

Baena-
Navarro et 
al. [2025] 

Intelligent 
Prediction and 
Continuous 
Monitoring of 
Water Quality in 
Aquaculture 

Achieved R² = 
0.999 with Random 
Forest for real-time 
aquaculture 
monitoring. QAOA 
halved training 
time. 

Need for 
computational 
efficiency and 
adaptability in 
aquaculture 
monitoring. 

Random Forest, 
Quantum 
Approximate 
Optimization 
Algorithm 
(QAOA) 

[11
] 

López-
Muñoz et 
al. [2024] 

Wireless Dynamic 
Sensor Network 
for Water Quality 
Monitoring Based 
on IoT 

Mobile IoT nodes 
captured spatial 
variation in water 
quality, detecting 
turbidity issues 
more accurately 
than static nodes. 

Traditional 
water 
monitoring 
lacks mobile 
sensor 
networks. 

Custom Wireless 
Sensor Network 
(WDSN) 

[12
] 

Smith et al. 
[2022] 

Blockchain-Based 
Water Quality 
Data Integrity for 
IoT Monitoring 

Blockchain ensured 
data immutability 
and real-time 
verification of 
water quality 
parameters. 

Lack of data 
integrity and 
trust in IoT-
based water 
quality 
monitoring. 

Blockchain 
Ledger, Hashing 
Algorithms 

[13
] 

Kumar et 
al. [2023] 

Sensor Fusion 
Techniques in IoT-
Enabled Smart 
Water Grids 

Multi-sensor fusion 
with Kalman Filters 
reduced noise and 
improved 
prediction accuracy 
for smart water 
management. 

Difficulty in 
integrating 
multiple 
sensor data 
streams for 
reliable 
monitoring. 

Kalman Filters, 
Sensor Fusion 
Models 

  
The Author proposed an ML-based approach to 
IoT-enabled water quality monitoring that laid 
the basis for developing a highly accurate 
system operating through sensor networks with 
ML models. It was further established that 
LightGBM models were more accurate than ANN 
and RF, with ANN enjoying faster training times. 
This study eliminated the inefficiencies of 
traditional water quality monitoring systems 

where sampling is expensive and manual. On the 
other hand, the IoT sensors integrated with 
LightGBM would present a cheaper, efficient, 
and accurate alternative for continuous water 
quality assessment [8]. 
The researchers implemented a water quality-
monitoring system in real-time for use in rural 
areas using IoT and ML. The system took some 
commonly considered indispensable 
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parameters pH and turbidity through IoT 
sensors and then had the classification of water 
safety run through XGBoost, with an accuracy of 
95.12%. The study highlighted the relative 
absence of real-time monitoring solutions in 
rural water systems and further established that 
water classification tasks are better undertaken 
by XGBoost than by SVM and Random Forest. 
Hence, this work suitably fits with the idea of 
providing real-time and affordable technology 
for safer water supply in rural areas [9]. 
 The Author chiefly dealt with intelligent water-
quality prediction and its continuous monitoring 
in an aquaculture setup. The model had a very 
high precision with Random Forest providing an 
R² value of 0.999. This introduces halve the 
training time with further computational 
enhancement. The work focused on the 
importance of flexible real-time monitoring in 
aquaculture, whereby water quality has to be 
predicted fast and accurately to maintain 
optimal conditions [10]. 
The writer introduced blockchain technology to 
reconcile issues of data integrity and data 
transparency in IoT-based water-quality-
monitoring systems. As far as their framework 
constituted immutability of data and permitted 
real-time verification of water-quality 
parameters, there could not be any questions 
concerning the sincerity or the tampering of the 
IoT sensor data. The approach from their study 
created a system both secure and trustworthy 
through the use of blockchain ledgers and 
hashing algorithms. Sensor data remain the 
backbone of water management systems; hence, 
they cannot afford any risk [11].  
The Author worked on sensor fusion techniques 
based on Kalman Filter-based technology, 
increasing the accuracy of smart water grids. By 
fusing data streams from different sensors, the 
system could perform noise reduction and 
confidently rely on real-time predictions for 
management of water. They had shown that 
multiple sensor inputs posed a challenge, but 
sensor fusion greatly enhanced monitoring 
accuracy, thereby assisting the smart water grid 
in efficient operation [12]. 
It designed an artifact CNN-GRU deep learning 
architecture for detecting contaminants in real-
time in an urban water infrastructure via IoT. 
Experimentally, it obtains an accuracy of 
96.45%, outperforming traditional-CNN-LSTM 
frameworks, especially towards dense urban 
environments where such real-time processing 
becomes paramount. The investigation targets 
the critical issues present in the implementation 
of real-time detection models in the complex 
urban water networks [13]. 

Author proposed a hybrid edge–cloud IoT 
framework for the decentralized measurement 
of water quality. Their approach had attained 
93.87% accuracy while reducing latency and 
power consumption, thereby ensuring that the 
problems associated with centralized 
monitoring systems-in which delays are 
common-were overcome. Real time processing 
of the data, close to the sensor, was done due to 
edge computing. This reduced the 
communication overhead and hence increased 
the efficiency and scalability of the system [14]. 
The Paper exploited transfer learning to 
improve water quality prediction in different 
geographical regions. Their model attained a 
very high accuracy despite use of small local 
data, using knowledge from other regions, 
addressing the issue of generalization of such 
models across varying water basins. As such, 
this study exhibits how transfer learning, in 
conjunction with deep neural networks, could 
greatly assist in the formation of flexible yet 
highly robust systems for water quality 
prediction [15].  
Used deep reinforcement learning (DRL) to 
optimize water flow, reduce losses, and lower 
contamination risks by 18% in real-time, 
working within IoT-empowered smart water 
distribution networks. At the time, current IoT 
water systems did not have smart distribution 
and contamination prevention mechanisms; 
hence, Zhou et al.'s approach tried to offer a 
resolution. DRL, therefore, efficiently manages 
water resources in making distribution 
networks safer and resilient [16]. 
 
WATER QUALITY PARAMETERS 
 A wide range of physicochemical and biological 
parameters is checked to determine water 
quality, which designates pollution level and 
suitability of water use. pH measures the 
acidity/alkalinity of water (0–14 scale, 7 being 
neutral) and hence influences chemical 
speciation and life forms. Most freshwater life 
forms prefer pH around 6.5 to 8.5. Though, any 
deviation from this range (for example, due to 
acid rain dropping pH) will stress life forms and 
mobilize metals.  
Dissolved oxygen (DO) is the concentration of 
free oxygen present in the water; this is very 
important in the respiration of aquatic fauna. A 
medium to high concentration of DO (>6 mg/L) 
is very good to support life; a <5 mg/L 
concentration of DO is life-stressing, while 
concentration of <3 mg/L will not sustain fish. 
Excess organic matter (sewage) gets 
decomposed by microbes, which consume DO, 
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making DO a direct indicator of organic 
pollution. 
The Biochemical Oxygen Demand (BOD) is a 
direct measure of oxygen required by microbes 
to decompose biodegradable organic matter. 
High BOD would, therefore, mean that pollution 
rich in biodegradable matter (sewage, wastes) is 
plotting itself and probably means low DO.  
Hence, the BOD stands as the indicator of 
organic pollution, e.g., unpolluted waters might 
have a BOD of <2-3 mg/L, while polluted waters 
have a BOD much greater. The turbidity of water 
is the parameter to measure its cloudiness, 
which originates from the suspended particles 
(silt, clay, plankton).  
It is measured in NTU units that stands for 
nephelometric turbid units based on light 
scattering. Clear drinking water has extremely 
low turbidity levels; however, runoff or treated 
effluents increase turbidity considerably, 
reducing light penetration and bad for aquatic 
plants. Additionally, high turbidity also 
encourages pathogens and clogs filters. 
Total dissolved solids (TDS) is the measure of all 
dissolved ions and molecules (salts, minerals) in 
water. The term is often used interchangeably 
with salinity or hardness. Typical freshwaters 
have TDS below 500 mg/L, whereas any 
concentration above ~1000 mg/L imparts a 
brackish taste to the water. High TDS is mostly 
not directly toxic (minerals can cause the water 
to taste bitter, and many consider this sort of 
water as medicinal water), but it could be an 
indication of pollution or scaling in pipes.  
Electrical conductivity (EC) is the ability to 
conduct an electric current, which increases 
with dissolved ion concentration. EC is then a 
quick surrogate for TDS: pure water means very 
low EC; saline or mineralized water means high 
EC. In the Indian system of classification, surface 
waters for irrigation or industrial use may have 
EC up to ~2250 µS/cm.[17-20] 
Key chemical parameters include nutrients like 
nitrate and phosphate. Nitrate (NO₃⁻) mainly 
originates from fertilizers, sewage, and natural 
decomposition. In low amounts, it is harmless, 
but high nitrate concentration (often above 50 
mg/L) leads to health effects. Nitrate interferes 
with oxygen transport that causes 
methemoglobinemia ("blue baby syndrome") in 
infants. Thus, WHO recommends a guideline of 
50 mg/L nitrate (as NO₃).  
Elevated levels of nitrate (and ammonium or 
organic nitrogen) in surface waters promote 
eutrophication and algal blooms. Phosphate 
(PO₄³⁻) is similarly conducive to algal growth in 
freshwater; excessive phosphorus leads to 
eutrophication, oxygen depletion, and "dead 

zones." Phosphate itself is not regulated for 
drinking water (low toxicity), but its level is a 
key water-quality indicator in ecology. 
Biological indicators include fecal coliforms, 
particularly E. coli. These gut bacteria constitute 
an indicator of fecal pollution with sewage or 
animal wastes. Toxic species in any detectable 
amount in drinking water render it unsafe; 
besides E. coli, the presence of any 
thermotolerant coliform is considered a 
pathogenic indicator. WHO requires drinking 
water to contain zero thermotolerant coliforms 
(E. coli) per 100 mL volume of water.  
Contrarily, CPCB standards for surface water in 
India restrict the total coliforms (a larger group 
alternate to E. coli) to a stricter limit; for 
instance, class A waters (drinking-water 
sources) must have less than or equal to 50 
MPN/100 mL. Conventional practice dictates 
that drinking water should be treated till it is in 
a microbiologically pure state.  
Heavy metals (e.g., arsenic, lead, chromium) are 
poisonous at any concentration considered 
dangerous even at trace concentrations. In the 
first place, arsenic (As) in groundwater leads to 
cancer formation and skin lesions and is limited 
to 0.01 mg/L by WHO and Indian norms, which 
might stem either from geology or industry. Pb 
disturbs the nervous system especially in 
children and is limited to concentrations of 0.01 
mg/L; Cr (in the trivalent form) is 
toxic/carcinogenic and limited to 0.05 mg/L. 
(Mercury, cadmium, and the like are also 
regulated but occur less often in routine 
monitoring).  
Usually, heavy-metal criteria in surface waters 
are enforced separately (For example effluent 
standards) rather than on the basis of CPCB 
classes.  
Other physicochemical parameters worthy of 
mention include ammonia, fluoride, and 
chloride. Ammonia (NH_3/NH_4^+) comes from 
fertilizer and sewage and is highly toxic for fish 
at concentrations near 1 mg/L but concerning 
humans, it is less of a problem. CPCB's Class D 
(for aquatic life) prescribes free ammonia at 1.2 
mg/L (as N), and WHO suggests ~1.5 mg/L for 
drinking water. 
 Fluoride (F⁻) prevents dental cavities at low 
levels, but >1.5 mg/L causes fluorosis; 
WHO/CPCB guideline is 1.5 mg/L. Chloride (Cl⁻), 
a component of salt, is mostly an aesthetic 
parameter:  
high chloride (above ~250 mg/L) imparts a 
salty taste and corrodes pipes.  
WHO and BIS recommend ≤250 mg/L, while 
CPCB’s WHO list gives 200–300 mg/L as 
acceptable. 
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Table II Comparison of water quality standards: CPCB/BIS (India), WHO (Drinking Water), and CPCB 

Surface Water (Class A). All values in mg/L unless stated.[21-25] 

Parameter CPCB 
(Drinking, 
~BIS) 

CPCB (Surface) WHO (Drinking) 

pH 6.5–8.5 6.5–8.5 (Class A, B, D); 
6.0–8.5 (Class E) 

6.5–8.5 (no health 
range) 

Dissolved O₂ 
(DO) 

N/A ≥6 mg/L (A), ≥5 (B), 
≥4 (C, D) 

– (no guideline) 

BOD₅ N/A ≤2 mg/L (A), ≤3 mg/L (B, 
C) 

– 

Turbidity 
(NTU) 

≤1 – ≤5 (guideline) 

TDS ≤500 – (Class E 
EC≤2250 µS/cm; 
~1200 mg/L) 

≤1000 (aesthetic) 

EC (µS/cm) – ≤2250 (Class E) – 

Nitrate (NO₃⁻) 45 (as N) – 50 

Phosphate 
(PO₄³⁻) 

– – – 

Total 
Coliforms 

0 (in 100 mL) ≤50 MPN/100mL (A), 
≤500 (B), ≤5000 (C) 

– 

E. coli (Faecal 
col.) 

0 (in 100 mL) – 0 (in 100 mL) 

Arsenic (As) ≤0.01 – 0.01 

Lead (Pb) ≤0.01 – 0.01 

Chromium 
(Cr) 

≤0.05 – 0.05 

Ammonia 
(NH₃–N) 

– ≤1.2 (free NH₃ as N) 1.5 

Fluoride (F⁻) ≤1.0 (desirable) – 1.5 

Chloride (Cl⁻) ≤250 – 250 (200–300 range) 

 
TRADITIONAL WATER QUALITY 

CLASSIFICATION TECHNIQUES 
 For centuries, traditional water quality 
classification has stood as a pillar in the 
assessment and regulatory compliance of bodies 
of water. These methods generally refer to the 
consecutive indices set algorithms. 

With threshold limits for quality or water-
determined model evaluations that reduce 
multidimensional water data into three or more 
very distinct categories. While the simplicity and 
attractiveness of these methods are 
unquestionable, one may argue that 
conventional ones sometimes fail to capture 
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real-time fluctuations or spatial variability in 
water quality scenarios. 
 
Water Quality Index (WQI) 
 The WQI is one of the most popular traditional 
classification methods. A water quality index is a 
composite indicator designed to combine 
several parameters of water quality into one 
streamlined score. Parameters such as pH, DO, 
BOD, Turbidity, TDS are observed and weighted 
depending on their importance, and finally 
merged into an overall index value. 
Different formulations of WQI exist: 

• Weighted Arithmetic Water Quality Index: 
This method assigns weights based on the 
relative importance of each parameter 
considered in determining the overall water 
quality. It is represented by the formula:  
               

 

where Wi is the weight of the parameter, and Qi 
is its quality rating. 
• Canadian Council of Ministers of the 
Environment (CCME) WQI: The CCME-WQI of 
water quality is based on a three-factor model: 
scope, frequency, and amplitude. These factors 
refer, respectively, to the number of parameters 
failing to meet standards, the frequency of 
violations, and the magnitude of those 
violations. 
• Oregon Water Quality Index: Mainly applied 
to surface waters, it combines and scores 
multiple parameters from 10 (excellent) to 100 
(very poor) for suitability of water quality  
WQI results are typically categorized into 
qualitative labels such as: 
• 0–25: Very Poor – Unsuitable for any use 
• 26–50: Poor – Polluted, requires treatment 
• 51–75: Medium – Suitable for irrigation or 
industrial use 
• 76–100: Good – Suitable for drinking after 
conventional treatment 
• >100: Excellent – Pristine and suitable for 
drinking 
Generally, WQI is a good way to simplify 
complex information for stakeholders to 
understand the water quality status. Its 
drawbacks involve the fact that it can often 
mask exceedances of particular parameters, 
meaning that high turbidity or dangerous 
concentration levels of heavy metals might be 
missed if the overall index remains acceptable.  
 
Threshold-Based Classification 

 Another classical technique classifies water 
bodies depending on the exceedance of an 
individual parameter above a pre-set threshold 
limit. This provides a direct comparison 
between the measured value and regulatory 
standard. For example, it is classified as polluted 
water samples with DO less than 5 mg/L or 
nitrates over 50 mg/L. 
Since threshold-based methods are simple and 
high on explainability, they have been popular 
to integrate with legislation. In India, the Central 
Pollution Control Board (CPCB) defines 
Designated Best Use Classes (A–E) to categorize 
water bodies in terms of drinking, bathing, 
irrigation, and industrial usage. 
CPCB Designated Best Use Classes: 
• Class A: Drinking water source without 
conventional treatment but after disinfection. 
• Class B: Outdoor bathing (organized). 
• Class C: Drinking water source after 
conventional treatment and disinfection. 
• Class D: Propagation of wildlife, fisheries. 
• Class E: Irrigation, industrial cooling, and 
controlled waste disposal. 
Each class is assigned limit-threshold values for 
pH, DO, BOD, and coliform counts. As an 
example, Class A water must maintain a pH 
between 6.5 and 8.5, DO at or above 6 mg/L, and 
total coliform counts below 50 MPN/100 mL. 
Similarly, the World Health Organization (WHO) 
provides global guideline values that classify 
water either as safe or unsafe depending on 
parameters like arsenic, lead, nitrate, and 
pathogens. Whenever any parameter measured 
in any water sample crosses the threshold, it is 
declared unsafe for human consumption. 
 
Regulatory Frameworks and Compliance 
 Traditional classifying systems are based on 
such regulatory frameworks that ensure that 
water bodies are safe for testing, use by man, 
and for protection of the environment. Both 
CPCB and WHO have their relevance to the 
subject: 
• CPCB (India): Regulating the surface and 
groundwater quality under threat, to lay down 
the mandatory threshold limits for drinking, 
bathing, and industrial uses. 
• WHO Guidelines: Provide the international 
standards of safe drinking water, including 
stringent limits on toxic metals (arsenic, lead), 
microbial contamination, and chemical 
pollutants. 
• EPA Standards (US): Concerned with 
establishing maximum contaminant levels 
(MCLs) to pollutants occurring in public water 
systems. 
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These laws are deterministic in nature, offering 
absolute boundaries for water classification. 
They, nevertheless, are static laws and so lack 
adaptability; any rapid variation in pollution 
levels could be missed due to sampling by 
manual methods. They also tend to require on-
site sample collection and laboratory analysis, 
thus extending the time taken for decisions.  
 
Advanced Traditional Techniques: Fuzzy 
Logic and Multivariate Statistics 
 Some traditional methodologies have hence 
integrated fuzzy logic and multivariate statistics 
to overcome the limitations of rigid thresholds. 

• Fuzzy Logic-Based Classification: From the 
standpoint of theoretical description, it 
smoothens the border between water quality 
classes. Whereas fixed threshold values 
determine if a set of conditions are "good" or 
"polluted," fuzzy logic assigns degrees of 
probability and allows intermediate 
classifications such as "mostly good" or 
"somewhat polluted.". 

• Multivariate Statistical Analysis: For 
example, Principal Component Analysis (PCA) 
and Cluster Analysis detect relations among 
water quality parameters and therefore can 
identify patterns from pollution origin and 
temporal variation.  
Despite providing some flexibility and enhanced 
interpretability to the classical systems, these 
techniques still rely on hard-and-fast rules and 
the fairly subjective knowledge of the 
expert[26]. 
 
MODERN TECHNIQUES IN WATER QUALITY 
CLASSIFICATION 
 The last decade has seen an unstoppable force of 
evolution in the water quality classification by 
means of ML, DL, and IoT. The modern approach 
does not shy from classic restrictions of real-
time, automatic monitoring, and predictive 
analytics. IoT sensor networks collect water 
quality (WQ) multivariate data continuously to 
feed into machine learning models for near-real-
time analysis. This merger comes with increased 
accuracy, timely decisions, and scalable 
monitoring at large scale or in remote areas. 
 
Machine Learning Approaches 
With Machine Learning, water quality analysis 
has gotten one step more modernized since it 
learns the complex relationships from the 
passed data-giving it the power to classify water 
samples into categories such as safe/unsafe, 
low/medium/high pollution, or CPCB/WHO 
water classes depending upon quality 
parameters involved. Labeled datasets where 

inputs are linked with well-defined outputs 
train supervised ML models. Among the popular 
algorithms are Support Vector Machines (SVM), 
powerful in binary and multiclass classification 
of water quality, especially in drawing a line 
between the safe and contaminated categories. 
SVMs stand out for such protection against 
overfitting, particularly in cases where 
dimensionality is high. Likewise, Random 
Forests (RF), being an ensemble approach that 
causes several decision trees to be built and 
then combines their results, have widespread 
application in WQI prediction. Random Forests 
are effective when it comes to handling noisy 
data and increasing the accuracy of 
classification. 
Other methods in supervised learning apply k-
Nearest Neighbors (k-NN), a non-parametric 
technique that classifies samples by the majority 
class of its nearest neighbors. It is a simple yet 
effective method for detecting local anomalies in 
water data. Decision Trees are another intuitive 
model that splits water samples according to 
some feature value thresholds, for instance, DO 
levels over 5 mg/L may imply "Safe" water, 
while such systems are interpretable, Decision 
Trees are prone to overfitting if not properly 
pruned. Gradient Boosting Machines (GBM) 
enhance prediction accuracy by building models 
sequentially to correct the errors of previous 
models. GBMs have demonstrated high accuracy 
in WQI prediction, especially when combined 
with real-time IoT data for continuous 
monitoring. 
Labeled data in water quality research can 
sometimes be inexistent or scarce; practically, 
the water quality analytical techniques may 
have to rely on observations and inherent 
parameter characteristics. The procedure to 
analyze the data without supervised signals to 
cluster water samples or to reduce 
dimensionality is an unsupervised technique.K-
means algorithm, for instance, is employed to 
classify water samples according to certain 
parameters such as pH, turbidity, and BOD that 
are the criteria of similarity. Thus, the method 
might help to locate clusters of polluted areas on 
a large water body. Now, principal component 
analysis is a dimension reduction technique 
which assists in interpreting and visualizing 
multivariate data. In water quality research, PCA 
is often applied to preprocess data before model 
training to eliminate redundant features. 
Fig2.represents impact of performance of 
hierarchical clustering constructs a cluster tree 
to detect nested groupings of water samples 
with similar quality and finds applications in 
water network analysis.Random forest and 
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XGBoost are ensemble methods combining 
multiple algorithms to further enhance accuracy 
and robustness; such combinations perform on 
WQI prediction better than their single classifier 
counterparts. Feature selection methods are 
also utilized to improve the accuracy of WQI 
prediction by selecting the most informative 
features, such as DO, BOD, and pH, from lots of 
redundant or noise features [27]. 

 

Fig.2 Impact of feature Selection on Model 
Performance 

 
Deep Learning Models 
Deep learning extends the usual ML methods by 
employing multi-layer neural networks to model 
the complex nonlinear relationships found in 
water-quality datasets. They are best at 
handling high-dimensional and time-series data 
from IoT sensors. From among the DL 
architectures, CNNs are constituted to process 
spatially structured data and, therefore, provide 
suitable learning capacity for applications 
involving satellite imagery. A CNN can classify 
water bodies into polluted/clean categories 
from spectral data in remote sensing. It can also 
spatially map contamination by segmenting 
water surface maps for identifying pollution 
hotspots very efficiently. 
Conversely, Recurrent Neural Networks (RNNs), 
particularly those based on the LSTM structure, 
work well in handling temporal sequences of 
water quality data. Those models serve for time-
series forecasting to predict future 
contamination levels from recorded trends in 
water quality. The RNNs are also useful for 
stream and reservoir monitoring, assessing 
flowing water bodies in real time for pollution. 
Moreover, they detect anomalies, like sudden 
spikes in the concentrations of some pollutants 
such as ammonia or heavy metals, that might 
signal either industrial discharges or accidental 
contamination. 
Some recent papers explored Hybrid Deep 
Learning Models such as CNN-LSTM for 
maintenance and merging of spatial and 
temporal information. In one case, the hybrid 
architectures were analyzed for satellite 
imagery during contamination events across the 

river basin. Because the models combine CNN-
type spatial awareness with LSTM-type 
temporal sensitivity, they are ideal for large-
scale water-quality monitoring.Transfer 
Learning further adds to the value of such 
solutions, allowing deep networks trained in 
one region to be fine-tuned for classification in 
another region with very little additional data.  
This is especially useful for cross-basin 
monitoring where training data at the local level 
is scarce. Deep Representation Learning, on the 
other hand, extracts meaningful features from 
raw sensor data, thus helping classification 
algorithms to perform better in situations with 
little labeled data.  
Fig.3 represents the accuracy of water quality 
testing technique performed using various 
techniques it highlights thathybrid models 
generally score higher than traditional ML 
techniques when a large dataset exists and 
conditions are such that spatial and temporal 
patterns become very important in classifying 
instances [28]. 
 
IoT and Sensor Integration 
Water quality monitoring has since Experienced 
a revolution with the emergence of IoT. Smart 
sensors are now deployed in lakes, rivers, and 
urban water systems to collect data 
continuously.  
Sensors measure parameters like pH, turbidity, 
and DO for basic water chemistry, while 
parameters like ammonia, nitrate, and 
phosphate are measured for nutrient pollution 
assessment.  
Heavy metal levels of Pb, As, Cr are measured 
for toxicity assessment.Data collected from 
these sensors are wirelessly transmitted 
through a common set of protocols- Bluetooth, 
GSM, LoRaWAN, NB-IoT, or 5G-to cloud or edge 
servers in real-time for analysis.  
Advanced remote configurations use LPWAN to 
maximize sensor life and thus reduce 
maintenance cost for remote deployments. Edge 
Computing would help perform localized 
computing near the data source to reduce 
latency and bandwidth usage.  
Thus, allowing immediate decisions and alerts 
to be triggered at the presence of water 
contamination. Cloud Computing is then used to 
aggregate and process these high-volume data 
streams for large-scale analytics and historical 
trend evaluation. 
 
Real-Time Decision Support Systems 
IoT integrated with ML and DL offers real-time 
decision support for water management. 
Predictive analytics models may alert on 
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pollution spikes or threshold breaches. The 
models may further forecast contamination 
events based on weather conditions and runoff 
data and warn people much ahead to avoid 
water-crisis.  
The process of dynamic adjustment of 
purification processes may be done in water 
treatment plants due to Automated control 
systems. These systems, on their turn, display 
the real-time status and historical trends on 
mobile and web dashboards for regulators and 
stakeholders to improve transparency and 
response times. The overlay of IoT-based water 
quality analytics on GIS and Remote Sensing 
facilitates resource allocation and pollution 
control. 
 

 

Fig.3 Classification Accuracy of Water Quality 
Technique 

 
KEY ADVANCEMENTS, CHALLENGES AND 

LIMITATIONS 
The assessment and classification of water 
quality via online procedures have recently 
reached an unimaginable level with IOT and AI, 
majorly ML and DL. Ideally, with real-time 
sensing and monitoring systems worked in 
tandem with ML/DL-based classification, 
anomaly and pollution peaks can be detected far 
earlier than conventional time-based sampling. 
For example, LoRaWAN sensors, when set up 
along river systems, were able to classify better 
than 95% for critical measurements like pH and 
turbidity, thus theoretically bridging the 
performance gap with laboratory methods. 
Zheng et al.'s AI-assisted transfer learning 
paradigm exemplifies the application of AI as a 
generalization layer across geographic basins, 
allowing for the bypassing of constraints posed 
by local data scarcity. Other newer options 
include citizen science platforms allowing low-
cost sensor usage for community-based data 

collection, satellite optical measurements 
interpreted via deep learning for wide spatial 
coverage, and cloud analytics to allow the 
integration and interpretation of large-scale 
data. Importantly, these advances provide for 
automation of regulatory compliance through 
training ML models to trigger alarms on the 
violation of CPCB or WHO threshold values. 
Hybrid methods have, combining classical Water 
Quality Indices (WQIs) with ML models to 
increase both interpretability and reliability of 
water quality classification. 
Table III outlines the major technical and 
operational challenges faced in the development 
and deployment of intelligent water quality 
classification systems. These challenges range 
from fundamental issues like data scarcity and 
sensor reliability to complex concerns involving 
model transparency, regulatory compliance, and 
infrastructure limitations. 
The table links each challenge to innovative 
solutions, thus highlighting how some of the 
more recent developments in Machine Learning 
(ML), Deep Learning (DL), IoT, and 
communication technologies are addressing 
these problems. 
For example, data scarcity, especially in under-
monitored regions, is being alleviated via 
transfer learning and federated learning, which 
enable models trained on one type of dataset to 
generalize to another. Sensor-related challenges, 
such as noise, drift, and high cost of 
maintenance, are resolved through sensor 
fusion and energy-efficient hardware. 
Communication bottlenecks appear in remote or 
rural areas, permeated with LoRaWAN and 5G 
technologies, meanwhile, edge computing 
reduces latency by processing data near the 
source. 
Explainable AI frameworks grant transparency-
the key in obtaining regulatory acceptance-
while blockchain guarantees data integrity and 
traceability in decentralized sensor networks. 
Table III gives significant challenges and 
solutions to serve as a primary reference for 
stakeholders aiming to enhance scalable, 
resilient, and trusted water monitoring 
infrastructures. 

TABLE III.  Challenges and Corresponding Solutions in Water Quality Classification[29-30] 

Challenge Proposed Solution/Innovation 

Data scarcity 
Transfer Learning, Data Augmentation, Federated 
Learning 

Sensor reliability (noise, Sensor Fusion, Calibration Algorithms, Robust ML 
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drift) Models 

Connectivity issues in 
remote areas 

LoRaWAN, NB-IoT, Edge Computing, 5G/6G 
Networks 

Lack of standardized 
protocols 

Unified Benchmark Datasets, CPCB & WHO 
Compliance Frameworks 

Model generalization across 
regions 

Cross-basin Transfer Learning, Domain Adaptation 

Black-box nature of ML/DL 
models 

Explainable AI (XAI), SHAP/LIME Techniques 

High deployment & 
maintenance cost 

Low-cost Sensors, Energy Harvesting, Optimized 
Sensor Placement 

Latency in decision-making Edge Computing, Real-time Analytics, Smart Alerts 

Data tampering & integrity Blockchain-based Data Logging and Verification 

Integration of multi-source 
data 

Deep Learning Fusion Models, GIS & Remote 
Sensing Integration 

 
There remain many challenges and several 
problematic after remarkable improvements. 
One of the few key problems has to do with data 
availability and quality. Many water bodies lack 
long-term historical datasets, especially those 
situated in developing regions, and there are 
limited numbers of labeled samples for training 
supervised learning models. Whereas low-cost 
sensors make widespread usage feasible, such 
sensors have their own limitation, such as 
sensor drift, noise, and calibration issues, which 
might produce inaccuracies or gaps in the data 
streams, and hence undermining the ML model 
reliability. Deciding on optimal sampling 
frequency and sensor placement strategies is 
tricky since such factors vary depending on the 
water system in question and the nature of 
pollutants involved. In terms of connectivity, 
LPWANs like LoRaWAN and Sigfox provide long-
range and low-energy communications but also 
have issues with patchy coverage in building-
dense urban areas or deep rural areas. Cellular 
networks could still be lacking in coverage and 
hence dead zones could prevent the timely 
collection of pollution data and alerts.  There are 
other, further barriers related to 
standardization and model generalization. With 
chemistry-dependent phenomena varying 
among regions, models trained within a specific 
geographical context will not necessarily apply 
to others. Standard benchmark datasets for 
water quality classification which everyone 

agrees on are not available to compare 
algorithms and perform validation. 
On top of that, many complex ML and DL models 
operate as "black boxes", which raises serious 
issues of trust and explainability from 
regulators requiring decision tools that must be 
transparent and interpretable. Finally, the 
biggest obstacles lie in sensor deployment cost 
and upkeep, especially in resource-scarce 
environments. The reliable supply of power, 
useful sensor calibration, and hardware 
servicing management continue to be major 
challenges in far-flung sites. In summary, while 
IoT and AI technologies have substantially 
extended the classification potential for water 
quality, tremendous practical constraints 
surrounding data, infrastructure, and model 
transparency are to be tackled with 
interdisciplinary efforts involving engineering, 
environmental science, and policy. 
FUTURE DIRECTIONS 
The future of water quality classification 
considers aspects that foster integrity of data, 
greater analysis sophistication, and scalability of 
systems to counteract present-day problems. A 
key focus remains on scarcity and the 
uncertainty in data. There needs to be a demand 
for sophisticated machine learning models that 
can work well when faced with missing or 
insufficient data. Data augmentation, transfer 
learning, and Bayesian inference are techniques 
that could provide solutions to increase 
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classification precision under uncertainty. Thus, 
the deep transfer learning model by Zheng et al. 
stands as an early pioneering work showcasing 
the success of this approach. 
Emerging technologies appear to possess a great 
potential for transforming water quality 
monitoring. Blockchain technology is gaining 
more and more attention with regard to the 
issue of securing data provenance and integrity 
by way of tamper-proof recording of sensor 
readings. Combining edge computing with latest 
wireless standards meets water quality data to 
be locally processed real fast, so as not to waste 
time and resources on routing it to centralized 
cloud servers, also solving network congestion 
issues. Future research should therefore 
investigate how these new communication 
standards can plug current coverage holes and 
enable ultra-reliable, low-latency IoT networks. 
Another critical area is sensor technologies. If 
one can develop sensors with enhanced 
sensitivity capable of multi-parametric 
detection that can be deployed in ways that best 
enhance measurement reliability (such as self-
healing sensor networks and adaptive sampling 
protocols), then improvements on measurement 
reliability can be truly achieved. Moreover, 
further developments in solar energy harvesting 
or from ambient energy, fused with low-power 
wide-area network technology, will extend the 
lifetime of sensor nodes and reduce the need for 
maintenance. Optimization algorithms and AI-
based sensor placement will satisfy cost 
constraints versus information gain to ensure 
adequate drought monitoring coverage. 
By integrating heterogeneous data, classification 
performance stands to gain improvement. In 
other words, combining in-situ measurements 
from IoT sensors with satellite and drone 
remote-sensing inputs and contextual 
environmental data, such as land use or weather 
forecasts, would generate a much more holistic 
and accurate water quality assessment. Deep 
learning methods are hence preferable as they 
accommodate the fusion of these multi-modal 
datasets and provide better spatial coverage and 
insight. XAI development aims at eventually 
enhancing transparency and trust in ML/DL 
models developed for water quality 
classification. XAI methods offer interpretable 
reasons behind model predictions, which 
become imperative for grasping regulatory 
acceptance and gaining stakeholder trust. 
Collaborative AI paradigms, including federated 
learning, enable the training of shared models 
over distributed datasets while maintaining 
privacy, opening the door for more extensive 
use-with respect to data sovereignty. 

Theoretically, from the perspectives of policy 
and community engagement, deploying live 
water quality classification in regulatory 
frameworks could initiate automatic violation 
reporting faster response. Citizen science 
supported by smartphone apps and 
crowdsourced data collection could complement 
official monitoring networks, increasing data 
availability and awareness among the public. 
Pursuing these directions during the 
development of a water quality classification 
system aims to evolve it into one that is robust; 
one that is real-time; one that is global in scale; 
and one that is transparent. Together, advanced 
ML/DL techniques and next-generation IoT and 
communication infrastructure could create a 
scenario wherein water safety is monitored 
around the clock and managed in a proactive 
manner. 
 
CONCLUSION 
In Conclusion, Water quality classification is 
experiencing a rapid evolution, passing from 
traditional static index-based methodologies, to 
more dynamic online smart AI-armed systems. 
While classical methodologies such as Water 
Quality Indices and regulatory thresholds are 
still indispensable for compliance and remedial 
assessment, machine learning and IoT-based 
methodologies are increasingly filling the 
breach in providing real time water quality 
monitoring and assessment. ML and DL methods 
have lately been shown capable of predicting 
and classifying water quality more accurately in 
real time from complex multi sensor datasets, 
which also provide more in-depth insights and 
timely warnings in a seminal way. However, the 
problems of data quality, sensor infrastructure, 
model generalization, and explainability 
continue to prevent full-scale implementation. 
Resolving issues of this kind requires the 
cooperation of interdisciplinary teams involving 
environmental scientists, data engineers, and 
policymakers. Some major advances in this 
regard are LoRaWAN-enabled sensor networks 
and transfer learning for cross-basin prediction 
of water quality, which indicate that ongoing, 
automated water quality classification is not far 
away. In future work, the focus should really be 
on including explainable AI techniques into the 
design, augment communication networks 
through the inclusion of new technologies like 
5G, and keep the model development in sync 
with global standards like CPCB and WHO. In 
conclusion, while much has been achieved, 
current constraints demand further innovation 
and collaboration to bring safe water to the 
communities of the whole world. 
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