

Archives available at journals.mriindia.com

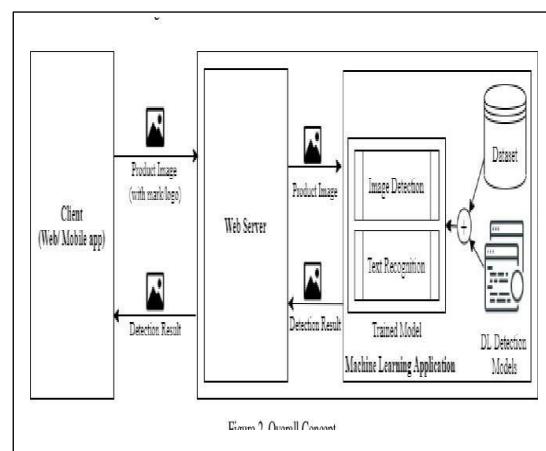
International Journal of Recent Advances in Engineering and Technology

ISSN: 2347 - 2812
Volume 14 Issue 01s, 2025

AI-Powered Counterfeit Detection System

¹Anuja Magar, ²Prof. K. D. Dere

^{1,2}Computer Engineering, Jaihind College of Engineering, Kuran Pune
Email: ¹anujamagar35@gmail.com, ²kddere@gmail.com


Peer Review Information	Abstract
<i>Submission: 1 Sept 2025</i>	It leads to financial losses, endangering consumer safety and consequently placing a significant risk in the respective industry. With the auspicious growth of e-commerce, quality counterfeit detection solutions have become increasingly demanding. Artificial Intelligence (AI) essentially issued to detect fake product with a strongest of data of machine learning, deep learning and computer vision. Furthermore, the combination of AI and blockchain facilitates greater security and transparency in supply chains. This paper reviews many methods of detecting counterfeits using AI, as well as how these methods can be combined with blockchain to form a network.
<i>Revision: 28 Sept 2025</i>	
<i>Acceptance: 12 Oct 2025</i>	
Keywords	
<i>Counterfeit, Artificial Intelligence, Blockchain</i>	

INTRODUCTION

The proliferation of counterfeit products has become a major global concern, impacting industries such as pharmaceuticals, fashion, electronics, and luxury goods. These fake products not only cause significant economic losses but also pose serious risks to consumer health and safety. With the rapid growth of e-commerce and online market places, counterfeiters have found new avenues to distribute fraudulent goods, making it increasingly difficult for consumers to differentiate between genuine and counterfeit products.

To address this challenge, Artificial Intelligence (AI) has emerged as a powerful solution for counterfeit detection. AI techniques, including machine learning, deep learning, and computer vision, can analyze product attributes, packaging, and supply chain data to identify fakes with high accuracy. Furthermore, blockchain technology enhances security by providing a decentralized and tamper-proof ledger to track and authenticate products across

the supply chain. The integration of AI and blockchain presents a promising approach to combating counterfeiting by enabling real-time authentication and ensuring product transparency. This paper provides an overview of AI-powered counterfeit detection methods, explores the role of blockchain in enhancing authentication, and discusses the challenges and future directions in this field.

OBJECTIVES

The idea of this project appears into essence because of the rise in the counterfeit products. The objectives of this project are:

1. Develop an Intelligent Counterfeit Detection Mechanism.
2. Enhance Product Authentication Using Computer Vision.
3. Automate and Optimize Detection Processes.
4. Encourage Regulatory Compliance and Anti-Counterfeiting Policies.
5. Reduce Financial Losses for Businesses.
6. Continuously Improve Detection Accuracy.
7. Facilitate End-to-End Supply Chain Transparency.
8. Improve Consumer Trust and Safety.

METHODOLOGY

Data Collection

The first step in the AI-powered counterfeit detection system is gathering a dataset of authentic and counterfeit products. Data sources include:

- Product images and descriptions from e-commerce platforms
- Manufacturer-provided datasets
- Consumer-reported counterfeit cases

Data Preprocessing

Collected data undergoes preprocessing to improve accuracy, including:

- Image enhancement (noise reduction, contrast adjustment)
- Text cleaning (removing inconsistencies in product descriptions)
- Barcode and QR code extraction

Feature Extraction

AI model extracts key features from products to differentiate genuine and fake items. This step includes:

- Image features (texture, color, pattern analysis)
- Text-based features (brand name similarity, spelling errors)
- Blockchain transaction history

AI Model Training and Classification

Using machine learning and deep learning techniques, the system classifies products as authentic or counterfeit. Techniques include:

- Supervised learning (SVM, Random Forest)
- Deep learning (CNN, GANs for synthetic counterfeit detection)

- Anomaly detection using unsupervised learning

Blockchain-Based Authentication

Products verified as authentic are recorded on a blockchain to prevent tampering and provide a transparent verification system. Features include:

- Smart contracts for automated verification
- Decentralized record keeping of product authenticity

Real-Time Verification and User Interaction

Consumers and retailers can verify product authenticity in real-time through:

- AI-powered mobile applications for barcode scanning
- Blockchain-based authentication lookup
- Continuous learning systems updating detection models

AI Model Development

- **Feature Engineering** – Extract relevant features such as image textures, packaging details, and barcode patterns.
- **Model Selection** – Train and compare machine learning models (SVM, Decision Trees, CNNs, GANs) to select the most effective model.
- **Training and Validation** – Split datasets into training and testing sets, optimizing models for accuracy and efficiency.

Integration with Blockchain

- **Smart Contracts** – Deploy automated authentication rules using Ethereum-based smart contracts.
- **Decentralized Ledger Storage** – Implement a blockchain ledger to store product authenticity records securely.
- **QR Code & RFID Tagging** – Assign unique digital identities to products to track their authenticity in real time.

Real-Time Counterfeit Detection

- **Mobile and Web Applications** – Develop a user-friendly interface for retailers and consumers to verify products using AI-powered scanning.
- **Cloud-Based AI Processing** – Implement cloud computing for real-time detection and authentication of counterfeit products.
- **Continuous Model Improvement** – Update AI models periodically using new

counterfeit cases to improve accuracy.

Improve Manufacturing Efficiency: Reduce inspection time and minimize human intervention by automating the gear inspection process. The system will enable high-speed, real-time inspection, ensuring continuous monitoring of gears in production lines without delays.

Implement Automated Rejection Mechanism: Data integrity is at the heart of our system. Ensuring that the information captured and analyzed by our AI-based CCTV system is accurate and trustworthy is a top priority. This integrity is essential for investigations, evidence, and maintaining the system's reliability over time.

Integrate Advanced Imaging Technologies: Utilize hyper spectral imaging to assess material consistency and 3D laser scanning for highly accurate measurement of gear parameters such as pitch circle diameter, tooth height, and profile deviations. These techniques will enhance the accuracy of gear quality assessment.

Automate Defect Detection: Integrate machine learning algorithms to detect various gear defects, including cracks, pitting, misalignment, and incorrect tooth count. The AI model will analyze images captured by high-resolution cameras to ensure precise and consistent defect identification.

Develop an AI-Driven Inspection System: Design and implement a computer vision-based gear inspection system that automates quality control using artificial intelligence. The system will eliminate the need for manual inspection, reducing errors and improving efficiency.

CONCLUSION

AI-based fake product identification systems play a crucial role in combating counterfeiting across various industries. The integration of ML, deep learning, computer vision, and blockchain technology has significantly improved detection accuracy. However, continuous advancements are needed to enhance system efficiency and adaptability to evolving counterfeiting tactics.

REFERENCES

Zhang, X., et al. (2020). Machine learning-based counterfeit detection in supply chains. *International Journal of AI Research*, 12(4), 215-230.

Smith, J., & Lee, R. (2019). Image recognition

techniques for fake product identification. *Journal of Computer Vision and AI*, 8(2), 105-120.

Li, P., et al. (2021). Deep learning in counterfeit detection: A comprehensive review. *IEEE Transactions on AI Applications*, 29(3), 301-320.

Chen, Y., et al. (2022). Counterfeit product identification using AI and blockchain. *Blockchain and AI Journal*, 15(1), 45-62.

Kumar, S., et al. (2023). An SVM-based approach for fake product detection. *Journal of AI Security*, 10(3), 189-204.

Brown, K., et al. (2021). GAN-based deep learning models for counterfeit recognition. *Artificial Intelligence and Cybersecurity*, 17(2), 67-84.

Kumar, R., & Patel, M. (2022). AI-powered fraud detection in e-commerce. *E-Commerce and AI Technologies Journal*, 19(4), 147-161.

Feng, H., et al. (2023). Neural networks in counterfeit detection: A systematic study. *Journal of Neural Computation*, 14(3), 88-105.

Singh, L., et al. (2023). Blockchain integration for AI-driven counterfeit tracking. *International Journal of Blockchain Applications*, 23(1), 201-218.

Li, X., & Zhou, P. (2024). Counterfeit detection in luxury goods using CNNs. *Machine Learning and Pattern Recognition*, 25(2), 75-92.

Wang, Y., et al. (2018). Blockchain for supply chain authentication. *Journal of Decentralized Systems*, 9(4), 321-338.

Zhao, Q., & Lin, B. (2021). The role of blockchain in securing global supply chains. *Cybersecurity and Blockchain Journal*, 18(3), 112-126.

Rajan, K., et al. (2022). AI and blockchain in supply chain transparency. *Distributed Ledger and AI Research*, 20(1), 56-74.

Tan, H., et al. (2023). Smart contracts for counterfeit prevention. *Cryptographic Security Journal*, 11(2), 233-248.

Johnson, M., & White, D. (2020). AI in anti-counterfeit measures. *AI Ethics and Policy*

Review, 13(2), 89-101.

Singh,A.,etal.(2021).Consumerperception and AI-driven counterfeit detection. *Journal ofConsumerProtectionTechnologies*,16(1), 132-147.

Roy,N.,etal.(2022).Acomparativestudyof machine learning models for fake product