International Journal of Recent Advances in Engineering and Technology

—
pm—
7l
/|

Archives available at journals.mriindia.com

International Journal of Recent Advances in Engineering and

Technology

ISSN: 2347-2820
Volume 13 Issue 01, 2024

Advancements in Neural Architecture Search for Automated Model Design

Prof. Dipannita Mondall, Sheetal S. Patil?

1Assistant Professor, Artificial Intelligence and Data Science Department, D.Y Patil College of Engineering and
Innovation Pune, India. mondal.dipannita26@gmail.com
ZDepartment of Computer Engineering, Bharati Vidyapeeth University College of Engineering, Pune

sspatil@bvucoep.edu.in

Peer Review Information

Submission: 20 Feb 2024
Revision: 15 April 2024
Acceptance: 12 May 2024

Keywords

Neural Architecture Search
Automated Model Design
Differentiable Search Methods
Evolutionary Algorithms

Abstract

Neural Architecture Search (NAS) has emerged as a transformative
approach to automating the design of deep learning models,
significantly reducing human effort and expertise in model architecture
engineering. This paper reviews recent advancements in NAS
techniques, including differentiable search methods, reinforcement
learning-based approaches, and evolutionary algorithms. We explore
the impact of these methods on model efficiency, scalability, and
accuracy across various tasks such as image classification, natural
language processing, and reinforcement learning. Furthermore, we
discuss the integration of hardware-aware optimization strategies that
balance model complexity with real-world deployment constraints. The
convergence of NAS with self-supervised learning and foundation
models is examined, highlighting a paradigm shift toward generalized
and automated Al systems. Despite its progress, challenges remain,
including high computational costs, limited generalizability, and the
trade-off between exploration and exploitation in search strategies. We
conclude by outlining future research directions, emphasizing the need
for sustainable and interpretable NAS frameworks that democratize
access to state-of-the-art Al models across diverse applications.

INTRODUCTION

network architectures remains a complex and
time-consuming task that requires expert intuition
and extensive trial-and-error experimentation.

Deep learning has revolutionized various domains,
including computer vision, natural language
processing, and speech recognition, by delivering
state-of-the-art performance across numerous
applications. However, the design of optimal neural
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Neural Architecture Search (NAS) has emerged as a
promising solution to automate this design
process, enabling the discovery of efficient and
high-performing architectures with minimal
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human intervention (Elsken et al,, 2019; Liu et al,,
2019).12,3]
Early NAS approaches relied heavily on
computationally expensive reinforcement learning
(Zoph & Le, 2017) and evolutionary algorithms
(Real et al, 2019). While these methods
demonstrated the potential of automated
architecture design, their high computational
requirements limited their practical adoption.
Recent advancements, such as differentiable NAS
(Liu et al.,, 2019), have significantly reduced the
search cost, making NAS more accessible and
scalable. Additionally, hardware-aware NAS
techniques have gained prominence, optimizing
architectures not only for accuracy but also for
computational efficiency on target hardware
platforms (Cai et al., 2019). [1,5]
The rise of self-supervised learning and foundation
models has further fueled the interest in NAS, as the
demand for generalizable and efficient neural
networks continues to grow. This paper explores
the latest advancements in NAS, highlighting
innovative  search  strategies, optimization
techniques, and real-world applications. Moreover,
we discuss the challenges and future directions in
NAS research, emphasizing the importance of
sustainable and interpretable search frameworks.
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LITERATURE REVIEW

The development of Neural Architecture Search
(NAS) has rapidly evolved, leading to numerous
innovative methodologies and applications for
automated model design. Early NAS approaches

relied heavily on computationally expensive
techniques such as reinforcement learning and
evolutionary algorithms. Zoph and Le (2017)
pioneered reinforcement learning-based NAS,
demonstrating its potential by discovering
architectures surpassing manually designed
models in image classification tasks. Similarly, Real
et al. (2019) explored evolutionary strategies,
highlighting the robustness of genetic algorithms
for architecture discovery. [3,5]

To address the computational inefficiency of
traditional NAS methods, differentiable NAS
(DARTS) was introduced by Liu et al. (2019). This
approach significantly reduced search time by
approximating discrete architecture choices with
continuous relaxation, allowing gradient-based
optimization. DARTS laid the foundation for
scalable and efficient NAS methods, making it a
popular choice in subsequent research. [2]

Further advancements have focused on hardware-
aware optimization. Cai et al. (2019) proposed the
Once-for-All (OFA) framework, which trains a
single super-network and specializes it for
deployment on different hardware configurations.
This strategy not only optimizes accuracy but also
ensures computational efficiency across edge and
cloud environments. [1]

Another significant direction in NAS research
involves multi-objective optimization, balancing
accuracy, latency, and energy consumption. Tan et
al. (2019) introduced the EfficientNet family, which
used NAS to scale architectures while achieving
superior performance with fewer parameters and
reduced computational requirements. [4]

More recently, NAS has been integrated with
emerging paradigms such as self-supervised

learning and foundation models. These
advancements emphasize generalization and
adaptability across diverse tasks, further

solidifying NAS as a cornerstone of automated
model design.

Summary of Existing Work on Advancements in
NAS

Table 1: Overview of literature review

Authors Year Method Dataset(s)

Zoph & 2017 Reinforcement CIFAR-10,

Le Learning-Based ImageNet
NAS

Real et 2019 Evolutionary CIFAR-10,

al. Algorithms ImageNet

Advantages Disadvantages
Automated Extremely high
architecture discovery computational cost and

surpassing manual long training times.
designs.

Robust and adaptable High computational
to complex search complexity and

spaces. inefficient search.
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Liuetal. 2019 Differentiable NAS CIFAR-10,

(DARTS) PTB,
ImageNet
Caietal. # 2019 Once-for-All (OFA)  ImageNet

Tan & Le 2019 EfficientNet ImageNet

METHODOLOGY

A comprehensive framework for neural
architecture search (NAS), a critical technique in
machine learning that automates the process of
designing optimal neural network architectures.
This method systematically explores, evaluates,
and refines potential network designs through
iterative steps, ultimately selecting the best-
performing architecture for a given task.

A detailed walkthrough of each stage of the process
follows:

The process begins with the search space, which
defines the entire set of possible neural network
architectures that the system can explore. This
space includes variations in several aspects of
network design, such as the number of layers, types
of layers (convolutional, dense, recurrent, or
pooling layers), activation functions (like ReLU,
Sigmoid, or Tanh), the structure of connections
between layers (including skip connections or fully
connected paths), and hyperparameters such as
learning rates, filter sizes, and dropout rates. The
search space can be vast, especially when dealing
with complex tasks, and serves as the foundation
for discovering high-performance architectures.
Once the search space is defined, the search
method selects candidate architectures from this
pool for further evaluation. This selection process
is crucial and can significantly affect the efficiency
and success of the search process. Different
strategies can be employed to navigate the search
space effectively. Random search involves selecting
architectures randomly without any predefined
pattern. Reinforcement learning-based search uses
a controller, typically a neural network, that learns
which architectures perform well and prioritizes
them for further evaluation. Evolutionary
algorithms mimic natural selection by iteratively
mutating and combining candidate architectures to
discover better designs. Gradient-based search
directly optimizes architecture parameters using
gradients, similar to the way neural networks are

Fast search time using
gradient-based

Risk of performance
collapse due to search

optimization. space relaxation.
Efficient architecture Complex training
specialization for process and possible
diverse hardware accuracy trade-offs.
targets.

Superior accuracy- Limited generalization
efficiency trade-off to  non-convolutional

with fewer parameters. = architectures.

trained. The efficiency of the search method is vital,
as a poorly optimized search may result in wasted
computational resources and time.

The architecture selected by the search method
becomes the searched architecture, which is then
subjected to a rigorous evaluation process. During
evaluation, the candidate architecture is first
trained on a given dataset. This involves learning
patterns in the data through backpropagation and
optimization techniques such as stochastic
gradient descent. After training, the architecture is
validated to assess its generalization ability on
unseen data. Various performance metrics are
measured, including accuracy, precision, recall, F1
score, and computational efficiency (such as
inference speed and memory usage). These metrics
provide a comprehensive understanding of the
effectiveness of the architecture for the target task.
Following evaluation, the process reaches a critical
decision point where the system determines
whether the candidate architecture is "good
enough." This determination is based on a
comparison of the architecture’s performance
metrics against predefined thresholds or
performance criteria. If the architecture meets or
exceeds these criteria, it is deemed satisfactory, and
the process concludes with the identification of the
optimal architecture. This architecture is
considered the best design for the given task,
balancing performance and computational
efficiency.

However, if the architecture fails to meet the
performance requirements, the system does not
terminate. Instead, it enters a feedback loop, where
information from the evaluation phase is fed back
to the search method. This feedback enables the
search method to refine its strategy and make more
informed decisions when selecting the next
candidate architecture from the search space. The
process then repeats, with the search method
selecting a new candidate, evaluating it, and
deciding whether it meets the criteria.
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Fig.2: Basic Workflow of Neural Architecture Search
Methods

This iterative process continues until an
architecture is found that satisfies the desired
performance criteria. The final architecture,
identified as the optimal architecture, represents
the culmination of multiple iterations of search and
evaluation. It is typically well-suited for the task at
hand, offering a balance between high accuracy,
computational efficiency, and model complexity.

In conclusion, the framework depicted in the
diagram highlights the power and efficiency of
neural architecture search in automating the
discovery of high-performance neural network
architectures. By leveraging iterative search,
evaluation, and refinement, this approach
eliminates much of the manual trial-and-error
traditionally associated with neural network
design. It accelerates the development process and
often produces architectures that outperform
manually crafted models, making it an essential
tool in modern machine learning research and
applications.

RESULT

The results clearly illustrate that NAS-optimized
models consistently outperform their manually
designed counterparts across all key performance
indicators. For instance, NAS models show a higher
accuracy rate, indicating better overall prediction
capability. Precision and recall scores are also
elevated, highlighting their effectiveness in
correctly identifying true positives while
minimizing false positives and false negatives. The
F1 score, which balances precision and recall,
further reinforces the robustness of NAS models.
This performance advantage underscores the
efficiency of NAS in automating the design of high-
performance neural networks, reducing human
intervention while enhancing predictive accuracy
and computational efficiency.
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Fig.3 Performance Comparison: Manual vs NAS-
Optimized Models

CONCLUSION

advancements in Neural Architecture Search (NAS)
have revolutionized the automated design of neural
networks, leading to significant improvements in
model performance across key metrics such as
accuracy, precision, recall, and F1 score. By
leveraging sophisticated search strategies,
performance predictors, and gradient-based
techniques, NAS frameworks have streamlined the
discovery of optimal architectures, reducing the
reliance on manual trial-and-error processes.
Furthermore, recent innovations have enhanced
the robustness and computational efficiency of
NAS-generated models, making them highly
suitable for complex machine learning tasks. As
NAS continues to evolve, its integration with
emerging technologies is expected to further
accelerate breakthroughs in Al model design,
fostering the development of more accurate,
adaptable, and efficient neural networks.
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