

Archives available at journals.mriindia.com

International Journal of Recent Advances in Engineering and Technology

ISSN: 2347-2812 Volume 14 Issue 1s, 2025

Whitetopping a Viable and Sustainable Option for Rehabilitation of Roads

Walunj Dimpal Rajaram¹, Zhope Monika Tushar², Solanki Rohini Dhaneshwar³

^{1,3}Department of Civil Engineering Jaihind College of Engineering, Kuran, Pune, India ²Assistant Prof JCOE Kuran, Department of Civil Engineering, Pune, India dimpalwalunj2425@gmail.com¹, monikajcoe26@gmail.com², rdssolanki@gmail.com³

Peer Review Information

Submission: 20 Jan 2025 Revision: 24 Feb 2025 Acceptance: 27 March 2025

Keywords

Whitetopping Bitumen PCC Asphalt Concrete

Abstract

The study has been undertaken & investigate White topping is a concrete and asphalt restoration technique. It is characterized as an overlay of plain cement concrete on asphalt concrete. It provides a new innovative method of rehabilitation at a very inexpensive, little upkeep, and excellent outcomes. In addition, rapid development sin concrete material technology and mechanization are favoring concrete overlays as a sustainable option. Whitetopping is gaining progress nationwide in the building of roads. It can serve as a long-term substitute for road restoration or structural reinforcement.

INTRODUCTION

Over the years, there has been a steady increase in road traffic. This is a global occurrence. Such a rise is expected to continue in the foreseeable future, according to a worldwide projection. Even in industrialized nations, there is a lack of funding for new infrastructure projects, both for their construction and, more importantly, for their upkeep and repairs.

In a developing nation like India, the situation is obviously far worse. In recent years, the weight of trucks and tire pressure on our pavements have increased, pushing In a developing nation like India, the situation is obviously far worse. Our pavements are under more pressure to perform now than they were a few years ago due to the rise in truck weights and tire pressures. There has

been longitudinal cracking in several asphalt pavements and rutting in many others. Because of this, an increasing number of roads are deteriorating, and it is frequently discovered that the current pavement structure is insufficient to handle the current traffic.

The conventional approach of reinforcing and repairing this vast network will require significant financial and physical resources, both of which are quite limited.

Thin bituminous layers make up the majority of the network's current flexible pavements. The issue with bituminous pavements in general is that they deteriorate with time. The majority of our roadways generally have the following flaws:

- Fatiguecracking
- Blockcrack (D-cracking)
- Rutting

BACKGROUND ON WHITETOPPING ROADS Structural Beahaviour of Whitetopping

Conventional white topping is designed and constructed like a new rigid pavement without assuming any composite action. In this type of white topping dowel bars are provided across the transverse joints for load transfer and longitudinal joints are generally provided with tie bars for holding the slab together. Theload transfer across the joints is possible through dowel bars, granular interlocking or by combined action of both these mechanisms. The dowel bars are not used in TWT/UTW. Conventional white topping is un bonded while TWT/UTW is bonded

Whitetopping- A Viable and Sustainable option for Rehabilitation of Road

The Romans (300 BC-476 AD) were the first to construct concrete roads. Using 'Pozzolana' cement from the village of Pozzouli, close to Italy, horse hairs as fibers in concrete, and admixtures in their rudimentary form (such as animal fat, milk, and blood) were some of the creative elements they used in their construction. Because of their long lifespan and scientific design and construction, these roads gave rise to the proverb "all (concrete) roads lead to Rome. "Airports pavements were the first to use prestressed concrete, which was first introduced in the late 1940s. At Biggs Military Airfield in Texas, two-way prestressed slabs were in use around 1959. Nineinch (230 mm) post-tensioned slabs were used in place of the 24-inch (610 mm) plain pavement. Unfortunately, this concrete saving method has been slowed down by contractors' mile-a-day resistance to adopting this unproven technology, their fear of the unknown, and the requirement for more specialized labor. In the United States, between 1970 and 1990, about a dozen highways with prestressed concrete pavements of various designs were constructed.

RELATED WORK

The goal of white topping research is to increase the effectiveness, longevity, and economy of applying concrete overlays over pre-existing asphalt pavements.. Key highlights in whitetopping research include:

1. Structural Performance & Design

Bonded vs. Unbonded Whitetopping: Studies differentiate between bonded whitetopping (thin overlays with strong adhesion to asphalt) and unbonded whitetopping (thicker overlays designed to act independently).

Thickness Optimization: Research explores minimum thickness requirements for load-bearing efficiency while maintaining durability.

2. Material Innovations

Fiber-Reinforced Concrete (FRC): Enhancing tensile strength and crack resistance by incorporating synthetic or steel Fibres.

Whitetopping research continuoue to evolve with advancements in materials, design, and construction techniques to enhance pavement durability and cost- effectiveness

3. Construction & Maintenance

Surface Preparation Techniques: Research into asphalt milling and cleaning methods to improve concrete-asphalt bonding. Maintenance Strategies: Evaluation of crack sealing, joint resealing, and patching for extended service life.

LITERATURE BASED FINDINGS

Table 1 summarizes key related work in whitetopping

LQ	RelatedWork(Authora ndTitle)	Findings	Remarks
1	Design&execution		
	of thin white topping	stressesofdetectioninconventionalw	Theperformanceofpavemens
	Road(GaneshrajuNaidu,	hitetopping	atisfactorywithinpermissible
	B-Ramesh-2018)	PavementRoughness	limitLifecyclecostanalysisism
		Inconventionalwhitetopping	ortcosteffective as compared
		Life cycle cast Analysis	to others
2	Rehabilitationoflowvol		
	umeflexiblePavementb	crust details	flexiblepowmentstructuralyi
	ywhile	Traffic volume	nadeq-
	topping.	countPavementDistresssur	uateneedsstructuraloverlay
	(Author	vey	shorterJointspacingofthinest

	VinayH.Nsunils.2014)		overlayresultinlowestCritical stresscombination
3	Bondstrength ofwhite		
	topping& banded	bondstrengthRoughnessm	In case co substrates
	overlay constructedwith		roughess isnegligible effect
	self compacting		on direct tensilestrength
	highPerformance		because of chemicalbonding
	concrete (PabloPujadas,		
	sergio Hip-2017)		

GRAPHICAL REPRESENTATION OF RESULTS

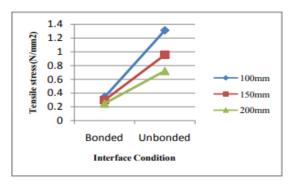


Fig 1: Concrete Tensile Stress vs. Interface
Bonding Condition
fordifferentthicknessofWhitetoppingpavemen
tswithbituminousmodulus1000N/mm2

DISCUSSION

The graph in Fig. 1 indicates that the tensile stress of concrete at various contact conditions. An unbonded interface condition is more affected by whitetopping thickness than a bonded situation. Partial bonding between the interfaces was also taken into consideration in this study since the interface bonding state has a significant impact on the behavior of whitetopped pavements.

CONCLUSION

According to the study, whitetopping has become a rapidly expanding pavement restoration technology. White topping, which offers the improved performance and durability of concrete, has become a quick and affordable solution for the rehabilitation of rutted asphalt pavement.

By bonding white topping overlays to pre-existing asphalt, a composite section is produced, offering better durability and performance at a reduced cost.

ACKNOWLEDGMENTS

The authors acknowledge the support provided by Jaihind College of Engineering, Kuran, and extend special thanks to Prof. Konde M.M., Prof. Supekar G.S., and Dr. D.J. Garkal for their guidance throughout this project.

References

Smith, T., and Fung, R., "Concrete Overlays - Sustainable Pavement Preservation Techniques Helping DOT's Adjusting to New Realities ofShrinking Resources." www.tac-atc.ca/conference/smith.

IRC:SP-70(2005)."Guidelines for the Use of High Performance Concrete."

Thomas, J., Pasko., (1998). "Concrete Pavements - Past, Present and Future." US Department of Transportation, Federal High way Administration, 62(1), 1-9

IRC: SP-76 (2008). "Tentative Guidelines for Conventional, Thin and Ultra ThinWhitetopping." Indian Road Congress, New Delhi.

Chunhua H., "Synthesis of Current Minnesota Practices of Thin and Ultra-Thin White topping." http://www.lrrb.org/PDF/200527.pdf. Accessed on July 7, 2011.

Synthesis oh Highway Practice 338, "Thin and Ultra-Thin White Topping", National Cooperative Highway Research Program, Transportation Researcg Board

Haifing Wen, Xiajun Li and Wilfung Martono, "PerformanceAssessment ofWisconsin's Whitetopping and Ultra-thin Whitetopping Projects, March 2010, Report No. 10-30, 2010.

Tyler Ley and Hari Rotithor, "Performance of Ultra-Thin Whitetopping in Oklahoma", Final report FHWA-OK-10-05, 2010.