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The rapid digitalization of healthcare has led to an unprecedented
accumulation of sensitive patient data. Federated Learning (FL) has
emerged as a promising paradigm that enables collaborative model
training across multiple healthcare institutions without exposing
raw data. However, FL remains susceptible to various privacy risks,
including membership inference attacks, data reconstruction, and
model inversion. To address these challenges, privacy-preserving
FL techniques, such as differential privacy, secure multi-party
computation, and homomorphic encryption, have been developed
to safeguard patient information while maintaining model utility.
Additionally, decentralized approaches incorporating blockchain
and fairness-aware mechanisms further enhance security and
model generalizability. This paper explores the latest advancements
in privacy-preserving FL for healthcare, discussing trade-offs
between privacy, efficiency, and model performance. We also
highlight open challenges and future directions for ensuring robust,
scalable, and ethically responsible FL implementations in real-
world medical settings.

INTRODUCTION

The increasing digitalization of healthcare systems has led to the generation of vast amounts of
sensitive patient data across multiple institutions. While this data holds significant potential for
advancing medical research and improving patient outcomes, strict data privacy regulations, such as
the Health Insurance Portability and Accountability Act (HIPAA) and General Data Protection
Regulation (GDPR), impose stringent restrictions on data sharing [1]. Federated Learning (FL) has
emerged as a promising paradigm to address this challenge by enabling multiple healthcare entities
to collaboratively train machine learning models without exchanging raw data [2]. However, despite
its advantages, FL remains susceptible to privacy threats, such as membership inference attacks,
model inversion attacks, and gradient leakage [3].

To enhance privacy protection in FL, researchers have proposed several advanced techniques,
including Differential Privacy (DP), which adds noise to model updates to prevent information
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leakage [4], Homomorphic Encryption (HE), which allows computations on encrypted data without
decryption [5], and Secure Multi-Party Computation (SMPC), which enables collaborative model
training while keeping individual contributions hidden [6]. Additionally, blockchain-based federated
learning frameworks have been explored to ensure auditability and decentralization in healthcare
applications [7].

Despite these advancements, challenges remain in balancing privacy, computational efficiency, and
model performance. Heterogeneous data distributions across hospitals, varying privacy policies, and
communication overhead further complicate the deployment of privacy-preserving FL in real-world
medical settings [8]. This paper reviews state-of-the-art techniques in privacy-preserving FL for
healthcare data sharing, analyzing their strengths, limitations, and potential future directions to
ensure secure, scalable, and ethical implementation.
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Fig.1: Privacy Preserving Federated Learning

LITERATURE REVIEW

Privacy-preserving federated learning (PPFL) has emerged as a critical approach for enabling secure
and collaborative model training in healthcare without exposing sensitive patient data. Several
privacy-enhancing techniques have been integrated into FL to address various security concerns.
Differential Privacy (DP) is one of the widely used methods, which adds noise to model updates to
prevent data leakage. Abadi et al. (2016) introduced DP-SGD, a privacy-preserving optimization
method that prevents adversaries from inferring individual patient records. In the healthcare domain,
Xu et al. (2021) proposed DP-FedHealth, a DP-based FL framework designed to enhance patient data
security in predictive disease models. However, while DP effectively mitigates privacy risks, it often
reduces model accuracy due to the noise injected into training updates. [4,9]

Homomorphic Encryption (HE) is another technique that enables computations on encrypted data
without requiring decryption, thereby preserving privacy. Gentry (2009) introduced the concept of
Fully Homomorphic Encryption (FHE), which allows complex computations on encrypted data, but
its high computational overhead has limited real-world applications. To improve efficiency, Zhang et
al. (2022) developed a partially homomorphic encryption scheme optimized for FL in healthcare,
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reducing encryption overhead while maintaining strong privacy guarantees. Despite its advantages,
HE-based FL models often introduce latency, making them less practical for real-time healthcare
applications.[5,10]

Secure Multi-Party Computation (SMPC) has also been employed in FL to ensure that multiple parties
can collaboratively compute model updates without revealing their individual data contributions.
Bonawitz et al. (2019) introduced Secure Aggregation, an SMPC-based approach that prevents a
central server from accessing individual model updates, thereby ensuring privacy in FL. Phong et al.
(2018) further demonstrated the effectiveness of SMPC-based FL in medical image analysis, allowing
hospitals to train deep learning models securely across institutions. However, the high
communication and computational costs of SMPC limit its scalability in large-scale healthcare
networks. [6,11]

Blockchain technology has also been integrated with FL to provide decentralized trust management
and secure auditability. Nguyen et al. (2021) proposed BlockFL, a blockchain-based FL framework
designed for privacy-preserved data sharing in healthcare. By leveraging blockchain's immutable
ledger, this approach enhances transparency and security, ensuring that model updates are tamper-
proof. However, blockchain introduces additional computational complexity due to the consensus
mechanisms required for validation, potentially impacting system efficiency.[7]

Beyond privacy, fairness in FL remains a key concern, particularly in heterogeneous healthcare
environments where data distributions vary across institutions. Li et al. (2020) proposed FedProx, a
framework designed to mitigate the effects of data heterogeneity in FL, ensuring stable model
convergence across diverse medical datasets. Annapareddy et al. (2023) introduced Fair-FL, a
privacy-aware FL framework that aims to balance accuracy across different patient demographics
while preserving privacy. Although these methods improve generalization, they require additional
computational resources and careful tuning to balance trade-offs between privacy, fairness, and
performance. [8]

While significant progress has been made in privacy-preserving federated learning for healthcare,
existing solutions face challenges related to scalability, communication overhead, and accuracy trade-
offs. The integration of techniques such as DP, HE, SMPC, and blockchain has strengthened security in
FL, but further research is needed to optimize efficiency and develop robust, scalable, and real-world
deployable privacy-preserving FL frameworks for healthcare applications.

Table 1: Overview of Literature Review

Technique Advantage Disadvantage Year Dataset
Used

Differential Privacy Prevents data leakage Reduces modelaccuracy 2016 MNIST,

(DP) by adding noise due to noise CIFAR-10

DP-FedHealth Enhances privacy in High privacy budget 2021 MIMIC-III
disease prediction affects performance (ICU data)
models

Fully Homomorphic =Allows computation High computational 2009 Synthetic

Encryption (FHE) on encrypted data cost, slow processing datasets

without decryption

Optimized Partially Reduces encryption @ Still introduces latency 2022 Chest X-ray
Homomorphic overhead while | in real-time applications (CovVID-19
Encryption maintaining privacy dataset)
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Secure Multi-Party Prevents server from High  communication 2019 Medical

Computation accessing individual = overhead image

(SMPQ) model updates datasets

SMPC for Medical Enables privacy- Computationally 2018 Brain MRI

Imaging preserving deep expensive for large- dataset
learning for hospitals | scale use

Blockchain-Based Enhances security and High computational 2021 IoT

FL (BlockFL) transparency with  complexity due to healthcare
decentralized trust consensus mechanism datasets

FedProx for Mitigates data Requires additional = 2020 MIMIC-1V,

Fairness heterogeneity, tuning for different elCU
improving datasets datasets
generalization

Fair-FL Ensures balanced Requires more 2023 Federated
accuracy across computational hospital
diverse patient groups resources datasets

ANALYSIS

Privacy-preserving federated learning (FL) has become a pivotal approach in healthcare, enabling
collaborative model training across decentralized data sources while safeguarding patient
confidentiality. This method allows multiple medical institutions to collaboratively develop robust
machine learning models without exposing sensitive patient data.

Key Approaches in Privacy-Preserving Federated Learning:

1.

Differential Privacy (DP): Incorporating DP into FL adds controlled noise to the data or
model parameters, ensuring that individual patient information remains confidential. This
technique provides mathematical guarantees against the re-identification of individuals
within a dataset. For instance, a study proposed a synergistic approach using differential
privacy and homomorphic encryption to enhance data privacy in healthcare FL applications.
Homomorphic Encryption (HE): HE allows computations to be performed directly on
encrypted data, producing encrypted results that, when decrypted, match the outcome of
operations performed on the raw data. This ensures that sensitive information remains
encrypted throughout the training process. The same study mentioned above integrates
homomorphic encryption with differential privacy to bolster privacy-preserving data sharing
in healthcare.

Blockchain Technology: Integrating blockchain with FL creates a decentralized and
immutable ledger for model updates, enhancing security and trust among participating
entities. This combination ensures that data provenance is transparent and tamper-proof. A
proposed system, BPFISH, combines blockchain and privacy-preserving FL to create a robust
smart healthcare framework, ensuring secure and efficient data sharing among medical
centers.

Synthetic Data Generation: Generating synthetic data that mirrors the statistical properties
of real datasets can be used to train models without exposing actual patient information. This
approach mitigates privacy concerns while maintaining data utility. The FedER framework
employs experience replay and privacy-preserving data synthesis to enhance model
generalization across decentralized medical datasets.
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Fig.2 Model Accuracy Comparison in Healthcare FL

Model accuracy comparison shows that centralized learning achieves the highest accuracy (92%),
while privacy-preserving methods slightly reduce accuracy due to added security constraints.
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Fig.3 Privacy Efficiency Distribution in PPFL
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Privacy efficiency distribution highlights Differential Privacy (DP) as the most effective approach
(40%), followed by Homomorphic Encryption (30%).
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Fig.4 Communication Overhead Over Training Rounds

Communication overhead increases significantly in PPFL, especially with Homomorphic Encryption,
due to the complexity of encrypted computations.

CONCLUSION

Privacy-preserving federated learning (FL) offers a transformative approach to healthcare data
sharing, enabling collaborative Al model training without exposing sensitive patient information. By
leveraging advanced privacy-enhancing techniques such as differential privacy, homomorphic
encryption, and secure multi-party computation, FL ensures data confidentiality while allowing
institutions to benefit from shared knowledge.

Despite its advantages, challenges such as data heterogeneity, high communication costs, and
regulatory compliance must be addressed for widespread adoption. Future research should focus on
optimizing FL frameworks, improving personalization for diverse medical datasets, and integrating
blockchain for enhanced security and transparency.

Overall, privacy-preserving FL has the potential to revolutionize healthcare by enabling secure, data-
driven advancements while safeguarding patient privacy, ultimately leading to improved medical
research, diagnosis, and treatment outcomes.
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