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Abstract 
 
The rapid digitalization of healthcare has led to an unprecedented 
accumulation of sensitive patient data. Federated Learning (FL) has 
emerged as a promising paradigm that enables collaborative model 
training across multiple healthcare institutions without exposing 
raw data. However, FL remains susceptible to various privacy risks, 
including membership inference attacks, data reconstruction, and 
model inversion. To address these challenges, privacy-preserving 
FL techniques, such as differential privacy, secure multi-party 
computation, and homomorphic encryption, have been developed 
to safeguard patient information while maintaining model utility. 
Additionally, decentralized approaches incorporating blockchain 
and fairness-aware mechanisms further enhance security and 
model generalizability. This paper explores the latest advancements 
in privacy-preserving FL for healthcare, discussing trade-offs 
between privacy, efficiency, and model performance. We also 
highlight open challenges and future directions for ensuring robust, 
scalable, and ethically responsible FL implementations in real-
world medical settings. 

 
INTRODUCTION 
The increasing digitalization of healthcare systems has led to the generation of vast amounts of 
sensitive patient data across multiple institutions. While this data holds significant potential for 
advancing medical research and improving patient outcomes, strict data privacy regulations, such as 
the Health Insurance Portability and Accountability Act (HIPAA) and General Data Protection 
Regulation (GDPR), impose stringent restrictions on data sharing [1]. Federated Learning (FL) has 
emerged as a promising paradigm to address this challenge by enabling multiple healthcare entities 
to collaboratively train machine learning models without exchanging raw data [2]. However, despite 
its advantages, FL remains susceptible to privacy threats, such as membership inference attacks, 
model inversion attacks, and gradient leakage [3]. 
To enhance privacy protection in FL, researchers have proposed several advanced techniques, 
including Differential Privacy (DP), which adds noise to model updates to prevent information 
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leakage [4], Homomorphic Encryption (HE), which allows computations on encrypted data without 
decryption [5], and Secure Multi-Party Computation (SMPC), which enables collaborative model 
training while keeping individual contributions hidden [6]. Additionally, blockchain-based federated 
learning frameworks have been explored to ensure auditability and decentralization in healthcare 
applications [7]. 
Despite these advancements, challenges remain in balancing privacy, computational efficiency, and 
model performance. Heterogeneous data distributions across hospitals, varying privacy policies, and 
communication overhead further complicate the deployment of privacy-preserving FL in real-world 
medical settings [8]. This paper reviews state-of-the-art techniques in privacy-preserving FL for 
healthcare data sharing, analyzing their strengths, limitations, and potential future directions to 
ensure secure, scalable, and ethical implementation. 

 
Fig.1: Privacy Preserving Federated Learning 

 
LITERATURE REVIEW  
Privacy-preserving federated learning (PPFL) has emerged as a critical approach for enabling secure 
and collaborative model training in healthcare without exposing sensitive patient data. Several 
privacy-enhancing techniques have been integrated into FL to address various security concerns. 
Differential Privacy (DP) is one of the widely used methods, which adds noise to model updates to 
prevent data leakage. Abadi et al. (2016) introduced DP-SGD, a privacy-preserving optimization 
method that prevents adversaries from inferring individual patient records. In the healthcare domain, 
Xu et al. (2021) proposed DP-FedHealth, a DP-based FL framework designed to enhance patient data 
security in predictive disease models. However, while DP effectively mitigates privacy risks, it often 
reduces model accuracy due to the noise injected into training updates. [4,9] 
Homomorphic Encryption (HE) is another technique that enables computations on encrypted data 
without requiring decryption, thereby preserving privacy. Gentry (2009) introduced the concept of 
Fully Homomorphic Encryption (FHE), which allows complex computations on encrypted data, but 
its high computational overhead has limited real-world applications. To improve efficiency, Zhang et 
al. (2022) developed a partially homomorphic encryption scheme optimized for FL in healthcare, 
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reducing encryption overhead while maintaining strong privacy guarantees. Despite its advantages, 
HE-based FL models often introduce latency, making them less practical for real-time healthcare 
applications.[5,10] 
Secure Multi-Party Computation (SMPC) has also been employed in FL to ensure that multiple parties 
can collaboratively compute model updates without revealing their individual data contributions. 
Bonawitz et al. (2019) introduced Secure Aggregation, an SMPC-based approach that prevents a 
central server from accessing individual model updates, thereby ensuring privacy in FL. Phong et al. 
(2018) further demonstrated the effectiveness of SMPC-based FL in medical image analysis, allowing 
hospitals to train deep learning models securely across institutions. However, the high 
communication and computational costs of SMPC limit its scalability in large-scale healthcare 
networks. [6,11] 
Blockchain technology has also been integrated with FL to provide decentralized trust management 
and secure auditability. Nguyen et al. (2021) proposed BlockFL, a blockchain-based FL framework 
designed for privacy-preserved data sharing in healthcare. By leveraging blockchain's immutable 
ledger, this approach enhances transparency and security, ensuring that model updates are tamper-
proof. However, blockchain introduces additional computational complexity due to the consensus 
mechanisms required for validation, potentially impacting system efficiency.[7] 
Beyond privacy, fairness in FL remains a key concern, particularly in heterogeneous healthcare 
environments where data distributions vary across institutions. Li et al. (2020) proposed FedProx, a 
framework designed to mitigate the effects of data heterogeneity in FL, ensuring stable model 
convergence across diverse medical datasets. Annapareddy et al. (2023) introduced Fair-FL, a 
privacy-aware FL framework that aims to balance accuracy across different patient demographics 
while preserving privacy. Although these methods improve generalization, they require additional 
computational resources and careful tuning to balance trade-offs between privacy, fairness, and 
performance. [8] 
While significant progress has been made in privacy-preserving federated learning for healthcare, 
existing solutions face challenges related to scalability, communication overhead, and accuracy trade-
offs. The integration of techniques such as DP, HE, SMPC, and blockchain has strengthened security in 
FL, but further research is needed to optimize efficiency and develop robust, scalable, and real-world 
deployable privacy-preserving FL frameworks for healthcare applications. 
   

Table 1: Overview of Literature Review 
Technique Advantage Disadvantage Year Dataset 

Used 
Differential Privacy 
(DP)  

Prevents data leakage 
by adding noise 

Reduces model accuracy 
due to noise 

2016 MNIST, 
CIFAR-10 

DP-FedHealth  Enhances privacy in 
disease prediction 
models 

High privacy budget 
affects performance 

2021 MIMIC-III 
(ICU data) 

Fully Homomorphic 
Encryption (FHE)  

Allows computation 
on encrypted data 
without decryption 

High computational 
cost, slow processing 

2009 Synthetic 
datasets 

Optimized Partially 
Homomorphic 
Encryption  

Reduces encryption 
overhead while 
maintaining privacy 

Still introduces latency 
in real-time applications 

2022 Chest X-ray 
(COVID-19 
dataset) 
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Secure Multi-Party 
Computation 
(SMPC)  

Prevents server from 
accessing individual 
model updates 

High communication 
overhead 

2019 Medical 
image 
datasets 

SMPC for Medical 
Imaging  

Enables privacy-
preserving deep 
learning for hospitals 

Computationally 
expensive for large-
scale use 

2018 Brain MRI 
dataset 

Blockchain-Based 
FL (BlockFL)  

Enhances security and 
transparency with 
decentralized trust 

High computational 
complexity due to 
consensus mechanism 

2021 IoT 
healthcare 
datasets 

FedProx for 
Fairness  

Mitigates data 
heterogeneity, 
improving 
generalization 

Requires additional 
tuning for different 
datasets 

2020 MIMIC-IV, 
eICU 
datasets 

Fair-FL  Ensures balanced 
accuracy across 
diverse patient groups 

Requires more 
computational 
resources 

2023 Federated 
hospital 
datasets 

 
ANALYSIS 
Privacy-preserving federated learning (FL) has become a pivotal approach in healthcare, enabling 
collaborative model training across decentralized data sources while safeguarding patient 
confidentiality. This method allows multiple medical institutions to collaboratively develop robust 
machine learning models without exposing sensitive patient data. 
Key Approaches in Privacy-Preserving Federated Learning: 

1. Differential Privacy (DP): Incorporating DP into FL adds controlled noise to the data or 
model parameters, ensuring that individual patient information remains confidential. This 
technique provides mathematical guarantees against the re-identification of individuals 
within a dataset. For instance, a study proposed a synergistic approach using differential 
privacy and homomorphic encryption to enhance data privacy in healthcare FL applications.  

2. Homomorphic Encryption (HE): HE allows computations to be performed directly on 
encrypted data, producing encrypted results that, when decrypted, match the outcome of 
operations performed on the raw data. This ensures that sensitive information remains 
encrypted throughout the training process. The same study mentioned above integrates 
homomorphic encryption with differential privacy to bolster privacy-preserving data sharing 
in healthcare.  

3. Blockchain Technology: Integrating blockchain with FL creates a decentralized and 
immutable ledger for model updates, enhancing security and trust among participating 
entities. This combination ensures that data provenance is transparent and tamper-proof. A 
proposed system, BPFISH, combines blockchain and privacy-preserving FL to create a robust 
smart healthcare framework, ensuring secure and efficient data sharing among medical 
centers.  

4. Synthetic Data Generation: Generating synthetic data that mirrors the statistical properties 
of real datasets can be used to train models without exposing actual patient information. This 
approach mitigates privacy concerns while maintaining data utility. The FedER framework 
employs experience replay and privacy-preserving data synthesis to enhance model 
generalization across decentralized medical datasets.  
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RESULT  

 
Fig.2 Model Accuracy Comparison in Healthcare FL 

 
Model accuracy comparison shows that centralized learning achieves the highest accuracy (92%), 
while privacy-preserving methods slightly reduce accuracy due to added security constraints. 
 

 
Fig.3 Privacy Efficiency Distribution in PPFL 
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Privacy efficiency distribution highlights Differential Privacy (DP) as the most effective approach 
(40%), followed by Homomorphic Encryption (30%). 
 

 
Fig.4 Communication Overhead Over Training Rounds 

 
Communication overhead increases significantly in PPFL, especially with Homomorphic Encryption, 
due to the complexity of encrypted computations. 
 
CONCLUSION 
Privacy-preserving federated learning (FL) offers a transformative approach to healthcare data 
sharing, enabling collaborative AI model training without exposing sensitive patient information. By 
leveraging advanced privacy-enhancing techniques such as differential privacy, homomorphic 
encryption, and secure multi-party computation, FL ensures data confidentiality while allowing 
institutions to benefit from shared knowledge. 
Despite its advantages, challenges such as data heterogeneity, high communication costs, and 
regulatory compliance must be addressed for widespread adoption. Future research should focus on 
optimizing FL frameworks, improving personalization for diverse medical datasets, and integrating 
blockchain for enhanced security and transparency. 
Overall, privacy-preserving FL has the potential to revolutionize healthcare by enabling secure, data-
driven advancements while safeguarding patient privacy, ultimately leading to improved medical 
research, diagnosis, and treatment outcomes. 
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