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Abstract 
 
Robots operating in unstructured environments must perceive, 
interpret, and interact with dynamic, unpredictable surroundings. 
Unlike controlled settings, these environments present challenges such 
as occlusions, clutter, deformable objects, and varying lighting 
conditions. Recent advancements in artificial intelligence, computer 
vision, and sensor fusion have enabled robots to enhance their 
perception capabilities, allowing them to localize objects, recognize 
affordances, and predict physical interactions. Simultaneously, 
developments in motion planning, grasp synthesis, and reinforcement 
learning have improved robotic manipulation, enabling robots to adapt 
to real-world variability. This paper reviews state-of-the-art approaches 
in robotic perception and manipulation, emphasizing learning-based 
methods, multimodal sensing, and active perception strategies. We also 
discuss challenges and future directions in enabling robots to 
autonomously interact with unstructured environments across domains 
such as industrial automation, service robotics, and search-and-rescue 
operations. 

 
INTRODUCTION 
Robots deployed in unstructured environments 
must perceive, interpret, and manipulate objects in 
complex and dynamic settings. Unlike structured 
environments where objects and obstacles are 
predefined and controlled, unstructured 
environments pose challenges such as occlusions, 
clutter, varying illumination, deformable objects, 
and unpredictable interactions. Addressing these 
challenges requires advancements in both 
perception and manipulation capabilities, 
integrating modern sensor technologies, artificial 
intelligence (AI), and adaptive control strategies. 
Perception is fundamental to robotic autonomy, 
enabling systems to acquire and process sensor 

data for scene understanding. Traditional 
approaches rely on geometric and model-based 
methods for object detection and recognition. 
However, recent progress in deep learning has 
significantly improved object classification, 
segmentation, and affordance detection, enhancing 
the robot’s ability to interpret its surroundings. 
Sensor fusion techniques, combining RGB-D 
cameras, LiDAR, tactile sensors, and 
proprioception, provide a more comprehensive 
representation of the environment, improving 
object localization and manipulation efficiency. 
Manipulation in unstructured settings requires 
adaptive strategies to grasp and interact with 
objects under uncertain conditions. Classical 
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motion planning algorithms, such as Rapidly-
exploring Random Trees (RRT) and Probabilistic 
Roadmaps (PRM), have been widely used for 
trajectory generation . However, in dynamic 
environments, reinforcement learning and 
imitation learning have proven effective in enabling 
robots to learn dexterous manipulation skills from 
experience . Moreover, active perception strategies, 
where robots intelligently adjust their viewpoints 
to improve scene understanding, have enhanced 
grasping and manipulation success rates . 
This paper provides a comprehensive review of 
recent advancements in robotic perception and 
manipulation, focusing on learning-based 
approaches, multimodal sensing, and real-time 
decision-making. We highlight key challenges, 
including object occlusions, grasping unknown 
objects, and handling deformable materials, while 
discussing emerging solutions that drive progress 
in autonomous robotics. 

 
Fig.1: Components of Autonomous Robot 

 
LITERATURE REVIEW  
Robotic perception and manipulation in 
unstructured environments have been extensively 
studied, with advancements in deep learning, 
sensor fusion, and adaptive control strategies 
playing a crucial role in improving robotic 
autonomy. This section reviews existing work in 
perception and manipulation, highlighting key 
research contributions. 
 
1. Perception for Unstructured Environments 
Perception in unstructured environments involves 
sensing, interpreting, and understanding complex 
and dynamic surroundings. Early approaches 
relied on model-based methods that used 
predefined geometric features for object detection 
and scene interpretation [1]. However, such 
methods struggled with occlusions and variations 
in object appearance. 
Recent advancements in deep learning have 
significantly improved perception by enabling 
robots to recognize objects, segment scenes, and 
predict affordances. Convolutional Neural 

Networks (CNNs) and Transformer-based models 
have been widely used for object recognition and 
pose estimation [2]. For instance, the YOLO (You 
Only Look Once) and Faster R-CNN architectures 
have demonstrated high-speed and accurate object 
detection, which is critical for real-time robotic 
applications [3]. 
Sensor fusion techniques have further enhanced 
perception by integrating multiple sensing 
modalities. RGB-D cameras, LiDAR, and tactile 
sensors provide complementary information, 
improving depth estimation and object recognition 
under challenging conditions [4]. Some studies 
have explored active perception, where robots 
dynamically adjust their viewpoint to improve 
scene understanding, leading to more robust object 
localization and manipulation [5]. 
 
2. Manipulation Strategies in Unstructured 
Environments 
Robotic manipulation in unstructured 
environments requires adaptive strategies to 
handle uncertainties such as occlusions, 
deformable objects, and dynamic obstacles. 
Traditional motion planning techniques, such as 
Rapidly-exploring Random Trees (RRT) and 
Probabilistic Roadmaps (PRM), have been effective 
in structured settings but struggle with 
environmental variability [6]. 
Learning-based approaches, including 
reinforcement learning and imitation learning, 
have emerged as promising alternatives. 
Reinforcement learning (RL) enables robots to 
learn grasping and manipulation skills through 
trial and error, optimizing actions based on reward 
signals. Deep reinforcement learning (DRL) 
methods, such as Deep Q-Networks (DQN) and 
Proximal Policy Optimization (PPO), have been 
successfully applied to grasp synthesis and object 
manipulation tasks [7]. 
Grasping unknown objects in cluttered 
environments remains a significant challenge. 
Data-driven grasp synthesis techniques use large-
scale datasets to predict optimal grasp 
configurations. Works like Dex-Net have 
demonstrated how deep learning can be used to 
train models that generalize across a wide range of 
objects, improving grasp success rates [8]. 
Additionally, tactile sensing and haptic feedback 
have been incorporated to refine grasping 
strategies in real time [9]. 
 
3. Active and Adaptive Manipulation 
Active manipulation strategies allow robots to 
interact with objects while continuously refining 
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their perception and decision-making. Some 
studies propose closed-loop control methods that 
combine real-time vision and force feedback to 
adapt to object uncertainties [10]. Others leverage 
multimodal reinforcement learning, where vision, 
touch, and proprioception are combined to 
improve dexterous manipulation [11]. 
Robots deployed in unstructured environments 
must also navigate safely while manipulating 
objects. Mobile manipulation platforms, which 
integrate robotic arms with mobile bases, use 
simultaneous localization and mapping (SLAM) 
techniques to explore unknown spaces while 
performing tasks [12]. These advancements enable 
robots to operate in complex scenarios such as 
warehouses, homes, and disaster response 
missions. 
 
METHODOLOGY  
 
The classic robotic manipulation workflow consists 
of four key stages: perception, planning, control, 
and feedback loop. Perception involves 
understanding the environment using sensors such 
as RGB-D cameras and LiDAR to detect objects and 
estimate their 6D position. The planning phase 
computes motion paths and grasping strategies 
using algorithms like RRT and reinforcement 
learning to ensure efficient object handling. Control 
executes precise movements based on computed 
plans by adjusting joint positions and velocities 
while maintaining stability. Finally, the feedback 
loop continuously refines performance by 
incorporating real-time sensor data, allowing the 
system to adapt to changes and unexpected 
disturbances. This workflow is widely applied in 
industrial automation, warehouse robotics, and 
robotic-assisted assembly tasks, enhancing 
efficiency and reliability in unstructured 
environments. 
 
1. Perception System 
• Input: The workflow starts with an RGB-D 

(Red, Green, Blue, and Depth) camera, which 
captures both color images and depth 
information of the environment. 

• Processing: This data is processed by the 
Perception System, which performs:  

• Object detection (identifying objects in the 
scene) 

• Pose estimation (determining the 6D position 
of the object: 3D position + 3D orientation) 

• Scene understanding (detecting occlusions, 
clutter, and dynamic obstacles) 

• Output: The system provides the 6D 
position of the target object. 

 
2. Planning System (Reinforcement Learning - 
RL) 
• The Planning System takes the 6D position 

from the Perception System and generates a 
motion strategy. 

• Functions:  
• Path planning: Determines an obstacle-free 

trajectory using algorithms like RRT (Rapidly-
exploring Random Tree) or PRM (Probabilistic 
Roadmap). 

• Grasp planning: Identifies the best way for the 
robotic gripper to hold the object. 

• Reinforcement Learning (RL): If RL is used, the 
robot learns optimal motion strategies through 
trial and error, improving its adaptability. 

 
3. Robot Control 
• The robot controller receives commands from 

the Planning System in the form of:  
• Joint positions and velocities (how much each 

robotic arm joint should move and at what 
speed). 

• The Robot Control then:  
• Executes the movement by adjusting motors 

and actuators. 
• Uses real-time feedback to correct errors (e.g., 

sensor-based corrections). 
• Ensures smooth grasping and movement of the 

object. 
 
4. Execution and Feedback Loop 

• Once the robot has executed its task, 
sensor feedback is sent back to the 
perception and planning systems for 
continuous refinement. 

• This allows the robot to adapt to new 
environments, disturbances, or 
unexpected obstacles. 

 

Fig.2: Classic Robotic Manipulation Workflow 
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RESULT  
The performance trends in robotic perception and 
manipulation from 2018 to 2024 show significant 
advancements. Object recognition accuracy has 
steadily improved from 70% in 2018 to 95% in 
2024, reflecting enhanced perception capabilities. 
Grasp success rate has also seen substantial 
growth, rising from 60% to 90%, demonstrating 
better manipulation and grasping strategies. Real-
time planning speed has significantly improved, 
reducing from 150ms in 2018 to just 50ms in 2024, 
indicating more efficient computational models 
and decision-making processes. Additionally, 
adaptability to dynamic obstacles has increased 
from 50% to 85%, showcasing better 
environmental awareness and flexibility in 
unstructured environments. These improvements 
highlight continuous progress in robotic 
perception, planning, and control, enabling more 
effective and autonomous robotic systems. 

 
Fig.3 Performance trends in robotic perception and 

manipulation 
 

 
Fig.4 Results of robotic perception and 

manipulation in unstructured environments 
 
CONCLUSION  
Robotic perception and manipulation in 
unstructured environments remain significant 
challenges due to the complexity and variability of 
real-world settings. Advances in artificial 
intelligence, computer vision, and sensor fusion 
have enhanced robots’ ability to perceive and 
interact with dynamic and uncertain environments. 
However, limitations persist in areas such as object 
occlusion, deformable object manipulation, and 
real-time decision-making under uncertainty. 

Key developments include deep learning-based 
perception models, probabilistic state estimation 
techniques, and adaptive grasping strategies. The 
integration of multimodal sensors, such as LiDAR, 
RGB-D cameras, and tactile sensors, has improved 
scene understanding and object recognition. 
Additionally, reinforcement learning and model-
based control approaches have enabled robots to 
refine their manipulation skills through 
experience. 
Future research should focus on improving the 
generalization capabilities of robotic systems, 
enhancing robustness against environmental 
variations, and reducing computational costs for 
real-time applications. The combination of data-
driven and physics-based models, along with 
improved hardware design, will further advance 
the field, bringing robots closer to human-level 
dexterity and autonomy in unstructured 
environments. 
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