

Archives available at [journals.mriindia.com](http://journals.mriindia.com)

## International Journal of Electrical, Electronics and Computer Systems

ISSN: 2347-2820  
 Volume 14 Issue 01, 2025

### IoT-Based Smart Solar Energy Monitoring System

<sup>1</sup>Jyotsna Gawai, <sup>2</sup>Anjali Jichkar, <sup>3</sup>Simran Kurzekar, <sup>4</sup>Gayatri Wadekar

<sup>1,2,3,4</sup>Electronics And Telecommunication Kdk College Of Engineering, Nagpur, India  
 jyotsna.chauhan@kdkce.edu.in<sup>1</sup>, Jichkaranjali3@gmail.com<sup>2</sup>, gayatriwadekar0@gmail.com<sup>3</sup>,  
 gayatriwadekar0@gmail.com<sup>4</sup>

| Peer Review Information                                                                                                                                                                                                                         | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><i>Submission: 13 Feb 2025</i><br/> <i>Revision: 18 March 2025</i><br/> <i>Acceptance: 15 April 2025</i></p> <p><b>Keywords</b><br/> <i>IoT (Internet of Things)</i><br/> <i>Solar Energy Monitoring</i><br/> <i>Smart Solar Systems</i></p> | <p>The increasing demand for renewable energy has driven the development of intelligent solar energy systems. This project presents an IoT-Based Smart Solar Energy Monitoring System that enhances the efficiency, reliability, and real-time management of solar power generation. The system integrates Internet of Things (IoT) technology with solar energy systems to provide continuous monitoring and optimization.</p> <p>The proposed system consists of solar panels, sensors, microcontrollers, and a cloud-based platform. Sensors measure critical parameters such as solar irradiance, temperature, voltage, and current, while a microcontroller processes this data and transmits it to a cloud-based server via Wi-Fi or GSM modules. The collected data is analyzed using algorithms to predict energy generation patterns, detect faults, and improve energy utilization.</p> <p>Users can access real-time data and analytics through a web dashboard or mobile application, allowing remote monitoring and control. The system also includes automated alerts for maintenance and performance anomalies, reducing downtime and improving efficiency. By providing an efficient, cost-effective, and scalable solution, this IoT-based smart solar energy monitoring system contributes to the advancement of sustainable energy. It empowers users with real-time insights, optimizing solar energy consumption and promoting environmental sustainability.</p> |

### INTRODUCTION

With the growing demand for sustainable and renewable energy solutions, solar power has become one of the most promising energy sources. However, effective utilization of solar energy requires continuous monitoring and optimization to ensure maximum efficiency. Traditional solar energy systems often lack real-time monitoring capabilities, making it difficult to detect faults, analyze performance, and optimize energy output. To address these challenges, this project proposes an IoT-Based Smart Solar Energy Monitoring System that enables real-time data collection,

remote monitoring, and intelligent decision-making.

### Need for Smart Solar Monitoring

The performance of solar panels depends on various factors such as solar irradiance, temperature, dust accumulation, and system efficiency. A lack of real-time data can lead to energy wastage, undetected faults, and inefficient power distribution. Manual inspection and maintenance of solar panels are time-consuming and costly. Hence, integrating Internet of Things (IoT) technology with solar energy systems

provides an automated and intelligent way to monitor and optimize power generation.

The proposed IoT-based system consists of various components, including sensors, microcontrollers (such as Arduino, ESP8266, or Raspberry Pi), data transmission modules, and cloud computing services, that work together to provide a seamless energy monitoring and management solution. Sensors play a critical role in collecting real-time data on environmental conditions and electrical parameters, while microcontrollers process this information and transmit it wirelessly to a central database. The system leverages AI-driven predictive analytics to identify potential issues, such as decreasing energy efficiency, faults in solar panels, overheating risks, and power surges, ensuring that preventive maintenance can be scheduled before a critical failure occurs. Additionally, the cloud-based data storage allows users to track historical performance trends, compare energy generation across different time periods, and forecast power production based on weather predictions and past data analysis. The integration of mobile and web applications provides an intuitive and user-friendly interface that enables homeowners, businesses, and grid operators to access critical information, receive instant alerts, and make informed decisions regarding energy distribution. Furthermore, smart automation capabilities allow users to control load balancing, grid integration, and battery storage optimization, ensuring that solar power is utilized efficiently and cost-effectively. For large-scale solar farms and industrial applications, this IoT-enabled system enhances operational efficiency by automating data collection, reducing manual intervention, and improving overall energy output.

By providing an intelligent, scalable, and cost-effective solution, this project contributes to the advancement of renewable energy technologies and promotes sustainability by maximizing the efficiency of solar energy production. The ability to remotely monitor and manage solar power installations empowers users to reduce energy losses, lower operational costs, and increase the reliability of their renewable energy systems. As solar power becomes an increasingly vital part of global energy infrastructure, the implementation of smart IoT-based monitoring solutions will play a crucial role in achieving energy independence, reducing carbon footprints, and supporting the transition toward a greener future. This project not only benefits individual solar panel owners but also helps governments, energy providers, and industries optimize their solar investments through data-driven decision-making. In addition, integrating machine learning algorithms with IoT-based monitoring enables advanced predictive analytics, helping to forecast solar energy

generation more accurately and enabling better grid synchronization and energy trading opportunities. The IoT-Based Smart Solar Energy Monitoring System is a step toward a more intelligent, connected, and sustainable energy future, where real-time monitoring and automation will enhance the overall adoption and effectiveness of solar power worldwide.

## Overview of the IoT-Based Smart Solar Energy Monitoring System

The IoT-Based Smart Solar Energy Monitoring System is designed to continuously track and analyze key performance parameters of solar power systems. This project integrates Internet of Things (IoT) technology, cloud computing, and smart sensors to provide real-time insights into solar panel efficiency, environmental conditions, and energy consumption. By leveraging automated data collection, wireless transmission, and intelligent analytics, this system helps optimize the performance of solar installations, reduce operational costs, and ensure maximum energy utilization.

## KEY PARAMETERS TRACKED BY THE SYSTEM

### Solar Irradiance (Sunlight Intensity):

The efficiency of solar panels is directly influenced by the amount of sunlight they receive. The system includes light sensors (such as Analyzing daily and seasonal variations in solar energy availability. a pyranometer or a photovoltaic reference cell) to measure solar irradiance in real-time. This data helps in, Predicting energy generation potential based on sunlight levels. Detecting shading issues caused by obstacles like trees, buildings, or dirt accumulation. By continuously tracking solar irradiance, users can optimize the positioning of solar panels, identify obstructions, and forecast power generation based on weather conditions.

### Temperature of the Solar Panels:

Solar panels operate efficiently within a certain temperature range. However, excessive heat can reduce efficiency and damage components. Temperature sensors monitor:

Panel surface temperature to ensure that overheating does not lower energy conversion efficiency. Ambient temperature to compare with panel temperature for better performance analysis. If the system detects excessive heating, it can send alerts to operators and suggest cooling measures such as shading, heat dissipation techniques, or adjusting the panel angle. This prevents thermal degradation and extends the lifespan of solar modules.

### Voltage and Current Output:

The system includes current and voltage sensors to measure the power output of solar panels in real-time. These sensors help in:

Detecting power fluctuations caused by faulty wiring, inverter issues, or shading effects. Ensuring that each panel is producing the expected output. Monitoring DC-AC conversion efficiency in grid-connected systems. By continuously tracking these electrical parameters, users can quickly identify underperforming panels, rectify electrical faults, and maximize energy conversion efficiency.

### Power Generated and Consumed:

One of the most important aspects of a solar monitoring system is tracking the total power generated by the solar panels and comparing it with the energy consumed by connected loads.

The system provides:

Real-time energy production data to analyze how much power is being generated. Historical energy trends for performance evaluation over time. Insights into energy consumption patterns to optimize load management. For grid-connected solar systems, the system also tracks how much excess energy is fed back into the grid and helps optimize battery storage usage. AI-based analytics can provide energy-saving recommendations to users, allowing them to make informed decisions about power distribution, battery storage, and grid integration.

### KEY BENEFITS OF IOT-BASED SMART SOLAR ENERGY MONITORING SYSTEM

**Real-Time Monitoring – Continuous Tracking of Solar Panel Performance for Improved Efficiency:-** One of the most crucial aspects of solar energy systems is real-time performance tracking, which ensures that solar panels operate at their highest efficiency. The IoT-based monitoring system enables continuous observation of various performance metrics, such as

Solar irradiance (sunlight intensity) to determine how much sunlight is available for power generation. Voltage and current output to analyze the energy being produced. Panel temperature to ensure that excessive heat does not reduce efficiency. Power generation trends to compare past and present energy production.

By integrating IoT sensors, the system collects real-time data and transmits it wirelessly to a cloud-based dashboard. This enables operators to instantly detect inefficiencies, faults, or external issues (such as dust accumulation or shading) that may hinder power generation. Additionally, real-time tracking allows users to optimize energy usage dynamically, ensuring that the available solar power is used in the most efficient manner.

### Example:

If a solar panel's energy output drops unexpectedly, the system can immediately detect and diagnose whether the issue is due to cloud coverage, panel overheating, or a technical fault, allowing for quick resolution and minimal energy loss.

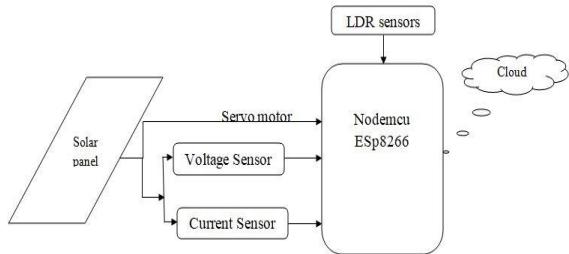



Fig 1:- IOT based smart solar monitoring system

### Remote Access – Users Can View and Analyze Data from Web Applications

One of the major advantages of an IoT-based solar monitoring system is its ability to provide remote access to performance data via a mobile application or web dashboard. This feature is particularly beneficial for users who manage:

Residential solar panels that need regular monitoring without frequent manual checks. Large-scale solar farms spread across different locations. Remote off-grid solar installations where physical access is difficult. With real-time cloud connectivity, users can log into their personalized dashboard to view: Live energy production reports, Historical data trends for performance analysis, System health status to check for faults or inefficiencies, Battery charge levels (if applicable), Weather forecasts and expected energy output. Moreover, users can receive automated notifications or alerts on their mobile devices, keeping them informed about sudden power fluctuations, energy shortages, or potential system failures. This remote accessibility ensures that users can take proactive measures without being physically present at the installation site.

### Predictive Maintenance – Detects Faults, Overheating, and Dust Accumulation, Reducing Maintenance Costs

Maintenance plays a critical role in ensuring the long-term efficiency and reliability of solar power systems. The IoT-based monitoring system uses AI-powered predictive analytics to:

Detect early signs of faults or panel degradation before they become major issues. Identify overheating risks and alert users to take necessary actions. Monitor dust and dirt accumulation on the panels, which can significantly reduce efficiency. Analyze inverter performance to detect voltage fluctuations or conversion inefficiencies. By

continuously analyzing data from the sensors, the system can predict when maintenance is needed, reducing unnecessary inspections and ensuring timely intervention only when required. This reduces operational costs while also increasing the overall lifespan of the solar panels.

Example:

If the system detects a gradual decrease in power output over several days, it may indicate dust accumulation or a minor wiring fault. Instead of waiting for complete failure, the system alerts users in advance, allowing for cleaning or repair before major power losses occur.

#### **Automated Alerts - Notifications for Performance Anomalies, Panel Failures, or System Malfunctions**

One of the most powerful features of an IoT-enabled solar monitoring system is its ability to provide automated alerts and real-time notifications. These alerts help in preventing major failures and ensuring timely corrective actions. The system can send alerts for:

Low energy output - Indicating potential shading, dust accumulation, or panel failure. Inverter malfunctions - Notifying users about voltage fluctuations or conversion inefficiencies. Battery overcharging/discharging (if applicable) - Preventing damage to battery storage systems. Abnormal temperature rise - Detecting overheating risks that could affect performance. Unexpected system shutdowns - Alerting users to check power connections or inverter issues. These notifications can be delivered via SMS, email, or mobile app notifications, ensuring that users are always informed about their solar system's health.

Example:

If a solar inverter starts malfunctioning, the system can immediately notify the user via mobile alert, allowing for a quick repair or replacement before complete failure occurs.

#### **METHODOLOGY**

The development of the IoT-Based Smart Solar Energy Monitoring System involves a structured methodology that integrates hardware, software, data communication, and cloud computing to enable real-time monitoring, fault detection, and energy optimization. This methodology is divided into six key phases: system design, hardware implementation, communication setup, data processing, cloud integration, and user interface development. Each phase is critical to ensuring the system functions efficiently and reliably.

#### **1. System Design and Architecture Development**

The first step in the methodology is designing the system architecture by defining the required components and their interactions. This includes selecting sensors, microcontrollers, power

management circuits, and communication modules. The system is structured in a way that enables real-time data collection from solar panels and seamless transmission to a cloud-based platform. A block diagram is created to illustrate how solar energy is monitored, processed, and visualized. The design phase also includes choosing the type of solar panels, battery storage, and inverter system that will be integrated with the IoT monitoring unit. Additionally, the energy flow, including power generation, consumption, and storage, is mapped to ensure optimal efficiency.

#### **2. Hardware Implementation and Sensor Integration**

Once the system design is finalized, the next step is hardware assembly and integration. The system includes solar panels, sensors, a microcontroller (such as Arduino or Raspberry Pi), a communication module (Wi-Fi, GSM, LoRa), and power management circuits. Sensors such as voltage sensors, current sensors, temperature sensors, and irradiance sensors are strategically placed to capture real-time environmental and electrical parameters. The microcontroller is programmed to continuously read data from the sensors and send it to the cloud. This phase also includes testing the accuracy of sensors, calibrating the devices, and ensuring reliable power management to keep the system operational even during cloudy days or low solar input conditions.

#### **3. Wireless Communication Setup and Data Transmission**

To enable real-time data monitoring, a reliable communication protocol is established between the hardware unit and the cloud-based storage system. Various wireless communication technologies such as Wi-Fi (ESP8266/ESP32), GSM/GPRS (SIM900), and LoRa (for long-range transmission) are considered based on the system's location and network availability. The selected communication module is integrated with the microcontroller, and a secure data transmission protocol (such as MQTT or HTTP) is implemented. The system is configured to transmit sensor data at regular intervals while minimizing power consumption. Additional error detection mechanisms are incorporated to prevent data loss or corruption during transmission.

#### **4. Data Processing and Machine Learning-Based Analysis**

The incoming sensor data undergoes preprocessing, filtering, and analysis to extract meaningful insights. Data cleaning techniques such as outlier removal and noise reduction are applied to improve accuracy. The processed data

is then analyzed using machine learning algorithms to detect trends, anomalies, and performance degradation in solar panels. Predictive models are used to forecast energy generation based on historical patterns and weather conditions. The system also uses threshold-based anomaly detection to trigger alerts if any abnormal voltage drops, overheating, or power losses occur. These insights help in optimizing energy utilization and improving maintenance efficiency.

## 5. Cloud Storage and Web Dashboard Development

To enable remote access and long-term data analysis, the processed data is stored in a cloud database such as Google Firebase, AWS IoT, or ThingSpeak. A web-based dashboard and mobile application are developed to display real-time energy metrics, system status, and alerts in a user-friendly interface. The dashboard includes graphical representations, energy consumption reports, battery storage levels, and predictive analytics. Advanced functionalities such as remote switching of solar-powered appliances, scheduling of maintenance tasks, and integration with smart grid systems are incorporated to enhance user control. Secure login authentication is implemented to protect user data and system settings.

## 6. Testing, Deployment, and Performance Evaluation

The final phase involves testing the system under real-world conditions to evaluate its accuracy, efficiency, and reliability. The system is deployed in a solar-powered setup, and its performance is compared against manual energy measurements to validate data accuracy. The reliability of real-time monitoring, fault detection, and predictive maintenance algorithms is assessed over a prolonged period. Necessary optimizations are made to enhance data transmission speed, reduce energy consumption, and improve sensor accuracy. User feedback is collected to refine the dashboard interface and mobile app features. Once all tests are successfully completed, the system is deployed for continuous monitoring, providing a scalable and efficient solution for solar energy management.

This structured methodology ensures that the IoT-Based Smart Solar Energy Monitoring System operates seamlessly, providing real-time insights, predictive maintenance, and energy optimization to improve the efficiency of solar power generation.

## FINDINGS

### 1. Enhanced Real-Time Monitoring and Data Accuracy

One of the key findings of this project is that real-time monitoring significantly improves the efficiency of solar energy systems. The integration of IoT sensors allows for continuous tracking of critical parameters such as solar irradiance, temperature, voltage, current, and power output. The data collected is highly accurate, enabling better decision-making. Unlike traditional solar systems, which rely on periodic manual inspections, this IoT-enabled system ensures that any performance fluctuations or irregularities are detected instantly, reducing the risk of unnoticed power losses.

### 2. Improved Remote Access and Control

The deployment of wireless communication modules (Wi-Fi, GSM, or LoRa) enables users to access system data remotely via mobile applications or web dashboards. This remote accessibility allows solar system operators, homeowners, or industrial users to monitor energy generation, storage, and consumption from anywhere. Additionally, users can control various aspects of the system, such as switching loads, adjusting power distribution, and monitoring battery levels. This feature is particularly beneficial for off-grid and large-scale solar installations, where regular physical inspections are impractical.

### 3. Predictive Maintenance Reduces System Downtime

The project findings indicate that predictive maintenance using IoT analytics plays a crucial role in preventing unexpected system failures. By analyzing trends in sensor data, the system can detect potential faults, overheating, dust accumulation, and panel degradation before they cause major issues. Automated alerts notify users about maintenance needs, allowing timely interventions and reducing operational costs. This proactive approach extends the lifespan of solar panels, improves overall system reliability, and ensures maximum energy production with minimal interruptions.

### 4. AI-Based Energy Optimization Enhances Efficiency

Machine learning algorithms integrated into the system help optimize energy consumption and grid integration. The system analyzes historical data to predict energy generation trends based on weather conditions and automatically adjusts power distribution to ensure efficient use. For instance, on days with lower solar irradiance, the system can prioritize battery storage or grid-based power supply to meet demand. This

intelligent energy management minimizes wastage and ensures optimal utilization of renewable energy resources, making the system more sustainable and cost-effective.

## **5. Reduction in Maintenance and Operational Costs**

Another significant finding is that automated monitoring and predictive analytics help reduce operational and maintenance costs. Traditional solar systems often require frequent manual inspections and reactive repairs, which can be expensive and time-consuming. By implementing IoT-based automation, this system eliminates unnecessary maintenance checks, as alerts are only triggered when issues arise. This reduces the need for on-site personnel, lowers labor costs, and ensures maximum system uptime. Additionally, early fault detection prevents expensive repairs or replacements, improving the overall return on investment (ROI) for solar power installations.

## **6. Scalability and Adaptability for Future Expansions**

The system's modular design and cloud-based infrastructure make it highly scalable and adaptable to different environments and applications. It can be deployed in residential homes, industrial facilities, smart cities, and large-scale solar farms without significant modifications. Additionally, the system can be integrated with smart grids, battery storage systems, and AI-driven automation technologies to further enhance its functionality. This adaptability ensures that as solar energy technology advances, the IoT-based monitoring system can continue to evolve, making it a future-proof solution for sustainable energy management.

### **RESEARCH IMPLICATIONS OF THE IOT-BASED SMART SOLAR ENERGY MONITORING SYSTEM**

#### **1. Contribution to Sustainable Energy Development**

This research significantly contributes to the field of sustainable energy development by demonstrating how IoT integration enhances the efficiency, reliability, and scalability of solar power systems. With the increasing global demand for renewable energy, this system serves as a model for smart solar energy management, providing insights that can be applied to residential, commercial, and industrial solar installations. The findings from this study encourage the adoption of IoT-based solutions in the renewable energy sector, helping governments and industries transition toward smart, data-driven energy systems.

#### **2. Advancements in Smart Grid and Energy Management Systems**

The research has implications for the development of smart grid technologies by showcasing how real-time solar energy data can be effectively integrated into existing power networks. By enabling bi-directional communication between solar panels and the grid, the system optimizes energy distribution, load balancing, and grid stability. Future research can expand on these findings to improve automated demand-response strategies, allowing for dynamic energy pricing models, intelligent load management, and efficient grid storage solutions. These advancements will play a crucial role in reducing dependency on fossil fuels and promoting the use of decentralized renewable energy sources.

#### **3. Role of IoT and AI in Renewable Energy Optimization**

This study highlights the growing role of IoT, artificial intelligence (AI), and machine learning in enhancing solar power generation and utilization. The use of AI-driven predictive analytics to detect faults, optimize energy distribution, and predict energy generation patterns provides valuable insights for future research in automated energy systems. The findings suggest that by improving data analytics, automation, and machine learning models, solar energy systems can become more self-sufficient, adaptive, and intelligent. This research paves the way for AI-based decision-making in energy management, making solar power more efficient and cost-effective.

#### **4. Potential for Reducing Maintenance Costs in Large-Scale Solar Farms**

The research also has significant implications for the economic viability of large-scale solar farms. Traditional solar energy infrastructure requires frequent manual inspections and reactive maintenance, leading to high operational costs. This study proves that IoT-based monitoring systems can reduce these costs by enabling predictive maintenance and remote monitoring. Future research can focus on developing cost-effective sensor technologies, improving fault detection algorithms, and enhancing automated repair mechanisms, making large-scale solar energy deployment more financially viable.

#### **5. Integration with Future Smart Cities and IoT Ecosystems**

This research contributes to the vision of smart cities by demonstrating how IoT-based solar energy monitoring can be integrated into intelligent urban infrastructures. Future studies can explore how smart solar energy systems can interact with other IoT-enabled services, such as electric vehicle (EV) charging stations, smart homes, and IoT-driven energy storage systems. The research findings suggest that interconnected

solar energy networks could lead to more sustainable, self-sufficient urban environments with optimized energy consumption and minimal reliance on external power sources.

## 6. Environmental and Policy Implications for Global Energy Transition

The study provides strong evidence supporting policy development for IoT-driven renewable energy adoption. By showcasing the benefits of automated solar energy monitoring, this research can guide policymakers in formulating regulations that promote smart energy solutions, incentivize IoT-based solar infrastructure, and establish standardized energy management protocols. Additionally, the environmental implications highlight the reduction of carbon footprints by minimizing energy wastage, improving efficiency, and maximizing the use of clean energy sources. Future research can focus on how government initiatives and international collaborations can accelerate the adoption of smart solar monitoring systems globally.

## CONCLUSION

The IoT-Based Smart Solar Energy Monitoring System represents a significant advancement in the field of renewable energy management, offering an intelligent, automated, and highly efficient solution for optimizing solar power generation. By integrating IoT sensors, microcontrollers, wireless communication, cloud computing, and AI-driven analytics, this system ensures real-time monitoring, predictive maintenance, remote accessibility, and energy optimization. These features collectively enhance the efficiency, reliability, and cost-effectiveness of solar energy systems, making them more sustainable and user-friendly. One of the key takeaways from this project is that real-time data collection and analysis can greatly improve the operational efficiency of solar panels by detecting performance fluctuations, preventing energy losses, and enabling proactive maintenance. The remote monitoring feature further eliminates the need for frequent on-site inspections, reducing maintenance costs and making solar power more practical for widespread adoption. Additionally, the incorporation of predictive analytics helps in identifying potential issues before they escalate, minimizing system downtime and improving overall power output. Moreover, the scalability and adaptability of this system make it suitable for integration with future smart grid solutions, enabling seamless energy trading, demand-side management, and automated load balancing. As solar energy continues to expand as a primary source of renewable power, IoT-driven automation will play a crucial role in making solar

power systems more reliable, sustainable, and accessible to a broader audience.

## References

Prasanna Rani, D.D., Suresh, D., & Kumar, G.S. (2021). *IoT based smart solar energy monitoring systems*. Procedia Computer Science, 180, 246–253. ScienceDirect

Krishna Rao, C., Sahoo, S.K., & Yanine, F.F. (2023). *An IoT-based intelligent smart energy monitoring system for solar PV power generation*. Energy Harvesting and Systems. ScienceDirect+3De Gruyter+3De Gruyter+3

Malvi, R., Mankar, K., Bhoyar, K., Godamale S., Pawar, S., & Nanure, A.D. (2022). *A Paper on Solar Power Monitoring System Using IoT*. International Journal of Research Publication and Reviews, 3(6), 265–267. IJRRP+1ijcseonline.org+1

Rasal, V., Raulkar, V., Reddy, S., Sanap, J., Sarap, A., & Mhetre, M. (2021). *IoT-Based Smart Solar Monitoring System*. In: Proceedings of the International Conference on Intelligent Computing and Networking. Springer

Katyarmal, M., Walkunde, S., Sakhare, A., & Rawandale, U.S. (2018). *Solar power monitoring system using IoT*. International Research Journal of Engineering and Technology (IRJET), 5(3), 3431–3434. IRJET+1ijcseonline.org+1

Rani, D.D.P., Suresh, D., & Kumar, G.S. (2021). *IoT based solar energy monitoring system*. Procedia Computer Science, 180, 277–284.

Chine, W., Mellit, A., Pavan, A.M., & Kalogirou, S.A. (2014). *An intelligent monitoring system for PV panels using a wireless sensor network*. Renewable Energy, 59, 197–204.

Kumar, R., & Patel, S.C. (2014). *IoT based smart solar photovoltaic remote monitoring system*. International Journal of Emerging Technology and Advanced Engineering, 4(4), 150–153. IJERT

Kumar, A., & Pal, R. (2018). *Solar power monitoring system using IoT*. International Journal of Engineering Research & Technology (IJERT), 7(4), 1–4. IJRRP+2IRJET+2ijcseonline.org+2

Rohit, A., & Kalavathi, M.S. (2017). *IoT based solar energy monitoring system*. International Journal of Pure and Applied Mathematics, 114(12), 1–9.

Yadav, P., & Kumar, R. (2018). *IoT based data logger and remote monitoring system for multiple solar photovoltaic panels*. International Journal of Engineering & Technology, 7(3.12), 157–161.

Patil, M., & Patil, S. (2019). *IoT based solar power monitoring system*. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 8(4), 983–988.

Shinde, P., & Patil, S. (2020). *IoT based solar energy monitoring system*. International Journal of Engineering Research & Technology (IJERT), 9(7), 1–5.

Kumar, N., & Singh, A. (2019). *IoT based solar power monitoring system using ESP8266*. International Journal of Scientific Research and Review, 8(2), 94–99.

Sharma, A., & Gupta, R. (2021). *IoT based solar energy monitoring and controlling system*. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 9(3), 1–5.