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Abstract

Proliferation of urban bike share systems is a challenge as well as an
opportunity to an efficient supply-demand area in real time in terms of
sustainable transport. The design of interpretable spatio temporal graph
neural networks (STGNNs) to predict bike sharing demand at high spatio
temporal resolution is discussed in this work, which allows to optimize
resources, i.e. dynamic rebalancing of bike availability and redistribution
among the stations or zones. As a continuation of the more recent
developments of spatio temporal deep learning and graph based
demand modeling, we present a framework of the spatial relationships
between stations, demand dynamics through time, and exogenous
factors (e.g., weather, time of day). Importantly we focus on
interpretability: in addition to accurate prediction, we combine methods
that can be used to understand what spatial, time-dependent and
contextual variables are responsible in predictions. Our method proves
to be highly predictive and provides human-competent explanations of
surges or drops in demand based on the experimentation on real-world
data of bike-sharing - therefore enabling real time decision support to
operators.
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Introduction

forecast, inappropriate distribution of bikes, and

Bike sharing systems (BSSs) have formed a part
and parcel of urban mobility, and they provide
flexible, eco friendly, and last mile transport
solutions. Nonetheless, to guarantee a good user
experience and its smooth running, the balance
between the supply of bikes and the need of their
users has to be maintained, particularly
considering that the latter is not constant over
time (hours/days/seasons) and space
(stations/regions). Conventional forecasting
techniques (e.g. time series models) tend to
emphasize the temporal correlations but ignore
the complicated spatial interactions between the
stations. This may result in ineffective demand
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ineffective redistribution.

The concept of machine learning has recently
been developed with intensely deep learning
models of the spatial-temporal type, which
provide a promising alternative. These models
can learn spatial and temporal dependencies by
modeling both spatial and temporal dependence
jointly by considering a bike sharing network as
a graph (stations or spatial zones are the nodes;
spatial proximity or demand-flow relations are
the edges) and using graph neural networks
(GNNs) combined with time modeling. It has
been proved by various studies that these models
are far much better compared to the traditional
statistical or purely temporal models.
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Figure 1. Comparative model performance (MAE/RMSE) across baseline methods and the proposed ISGN-
Bike architecture.

In addition to accuracy, another essential need in
real world systems is interpretability: operators
must have a way of knowing why demand is
expected to jump or decrease so that they can
make informed rebalancing choices. Based on
this, the current paper examines the
incorporation of interpretability methods into
spatio temporal GNN-based forecasting, to
generate explainable and actionable predictions
that can be used in real-time through resource
optimization. We discuss the literature through
the presented sections, our proposed
methodology, the results of the experiments and
the analysis of the results with respect to their
implications and the future directions.

Related Work

Some of the initial attempts at bike sharing
required time-series models (e.g. ARIMA) to
model time-varying demand patterns. These
models, however, do not take into consideration
spatial interdependencies between stations - i.e.
demand in one station can be affected by demand
in neighboring stations, or movement of bikes
between areas can give rise to spatially
correlated patterns of demand.

To resolve this, researchers started using deep
learning which combines spatial and temporal
information. An example is the MSTF Net model,
which utilizes a combination of 3D CNN, E3D
LSTM and fully connected networks to learn from
the short-term and long-term spatio-temporal
correlations as well as external information (e.g.,
weather, calendar, POI).

The more recent work involves the use of graph
neural networks. The ST BDP framework views
the structure of stations as a node in a demand
graph, runs a spatio temporal graph
convolutional network (STGCN) to learn spatial
dependency and a Temporal Convolutional
Network (TCN) block to learn temporal dynamics
to predict demand by combining the weather,
time, and demand history.

Yet another variant, STGA LSTM, is the hybrid of
a spatial information Graph Convolutional
Network and an LSTM network with a temporal
model with additions of the attention
mechanisms, i.e. consideration of spatial and
temporal links as well as the exogenous
variables, i.e. weather, land use, and user
demographics.

Table 1. Categories of input data used for spatio-temporal graph neural network forecasting of bike-sharing

demand.

Data Type Description

Examples

Demand station or zone

Historical Records of rentals/returns at each

Hourly rentals, returns, past demand window

Temporal

Periodic time patterns
Features P

Hour-of-day, day-of-week, seasonal indicators
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Spatial Station relationships encoded as a | Neighboring stations, distance matrix, demand-
Features graph flow edges

Contextual | External factors influencin . .
8 Temperature, rainfall, holidays, events, land-use

Features demand
Graph Connectivity representing spatial | GCN/GAT adjacency matrix, multi-relational
Structure dependencies edges

In more recent times hybrid designs that combine both graph modules and transformer style attention
mechanisms have appeared - such as in e fence (zoned) bike sharing demand forecasting - in order to be
able to scale and adjust to varying spatial relations and context. Although these works present encouraging
prediction results, the majority of them treat the modeling as a black box. Thus, interpretability is limited,
therefore, limiting trust and real-time adoption in operational resource management.

Motivation & Problem Statement

Even though the current spatio temporal GNN models are effective in predicting the demand of bike
sharing, there are still two important gaps:

1. Interpretability: The operators must know which spatial areas, which patterns in time, which
externalities (weather, time of day, day-of-week), have the strongest impact on demand - to make decisions
on whether to redistribute or expand. Black box predictions inhibit trust and debugging, and make it
difficult to make changes on the fly.

2. Real-time/dynamic resource optimization: Forecasting should be rapid and scalable to support real-
time operations (like hourly rebalancing) with dynamic flow of demand between stations or zones and
allow the decision to be made in real time.

Thus, the central question that we address is the following: Is it possible to create an interpretable spatio-
temporal graph neural network that can produce valid real-time demands forecasts as well as expose the
driving forces of the process in space, time, and context to aid the optimization of resources in a bike sharing

system?

Methodology

Our structure which can be called Interpretable
Spatio-Temporal Graph Neural Network of Bike
Demand (ISGN Bike) will start with the creation
of a graph of the bike-sharing system. Here,
nodes represent a station or a spatial zone, e.g. a
grid cell, and an edge is a relationship between
the nodes based on spatial closeness, or
historical demand-flow trends or other
relationship measures, like road accessibility and
distance. In order to simplify computation in
large networks, several stations can be grouped
into zones according to spatial aggregation plans
as used in the recent research.

A thorough input feature collection is done at
every node and time-step. These characteristics
are historical demand information, including
both rental and return counts, and time
information, including hour-of-day and day-of-
week which is represented through sine and
cosine functions to represent periodic trends.
Also, exogenous contextual data are added, such
as the weather, and public holidays, land-use
properties, population density, places of interest,
and special events. Historical demand in
combination with these contextual features has
been shown to increase predictive performance.
The framework consists of a spatio-temporal
neural model, where a graph neural network,
such as one of a Graph Convolutional Network or
Graph Attention Network, is used to learn spatial

dependencies, and a temporal modeling module,
such as one of a Temporal Convolutional
Network, LSTM or Transformer, is used to learn
temporal dynamics. The hybrid architecture
enables the model to learn not only the location
but also the time of demand variation, as it was
demonstrated in the earlier models such as ST-
BDP and STGA-LSTM.

The techniques that are included in the
framework in order to give transparency and
interpretability give the effect of attributing the
predicted demand to the  particular
characteristics of the input, such as spatial nodes,
temporal signals, and contextual variables. In the
case of either spatial or temporal use of attention
mechanisms, the weights of attention can
indicate the influential nodes or time steps.
Moreover, post-hoc explainability tools like
SHAP or integrated gradients are used to
measure the impact of each input feature,
whereas structural explanations are used to
show the neighboring nodes that have the
biggest impact on the demand prediction at a
specific node at a specific time-step.

Lastly, the framework has a real-time forecasting
and resource optimization layer. Bike operators
can use the short-term projections of the model,
generally over the coming one to three hours, to
make a decision based on data to reassign bikes,
reallocate the fleet, or adjust bikes to high-
demand areas. These operational decisions are
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backed by the interpretability outputs; in this
case, by explaining that an increase in forecasted
surge in Zone A is caused by weather conditions
that are to happen, peak traffic in the morning,
and a spatial spillover of a nearby Zone B. This
combination of prediction and explanation
allows the resources in bike-sharing to be
managed efficiently and approximately in real-
time.

Detailed Design

The first step in the graph representation and
preprocessing stage would be to choose which
granularity of nodes to use that may either be
station-level or zone-level through grid cell
aggregation. Large cities are better represented
at the zone level, and recent research has
demonstrated that spatial aggregation using a
grid has the potential to simplify the structure of
the graph while maintaining the necessary
desired demand dynamics. The graph is then
defined with edges between nodes based on a
number of criteria, including proximity of the
nodes, past flow patterns of common travel
between stations or zones, or a multi-relational
definition that represents the network
connectivity of the transport networks or the
land-use similarities. Periodic techniques, which
include sine and cosine functions to represent
hours of day, days of week, months of year, are
employed as temporal signals to normalize and
encode temporal signals in order to effectively
represent regular demand cycles, which is a
common technique in previous research. Also,
exogenous contextual information are collected
such as weather conditions such as temperature,
precipitation, and wind, special events, holidays,

land-use or points-of-interest density, and access
to public transit. Combination of these contextual
characteristics and the demand graph is known
to yield better predictive performance.

In the case of the neural architecture, the spatial
feature extraction is done using a Graph
Convolutional Network (GCN) or Graph
Attention Network (GAT), which produce node
embeddings, which represent the impact of
neighboring stations or zones. They are then fed
to a Temporal Convolutional Network (TCN) or
Transformer-based temporal module to predict
demand across time to produce a single spatio-
temporal model. The design is based on and
improves the past successful designs like ST-
BDP. The network outputs layer predicts future
demand, which is usually in terms of number of
rentals per hour, at each node given a given
forecast horizon e.g. one to six hour ahead.
Attention mechanisms in GAT or Transformer
modules are used as a way to ensure
interpretability since they use them to decide
which spatial neighbors, temporal lags, or
contextual features contribute the most to each
forecast. The post-hoc attribution techniques, e.g.
SHAP or integrated gradients are also used to
measure the significance of each input feature,
the historical demand, weather, and time-related
signals included. Moreover, the contributions
may be represented on spatial contributions,
which point out the surrounding areas or
stations that play a significant role in forecasted
demand at a particular node and moment. The
maps can especially be handy when the
operators need to know how spatial spillovers
and to plan redistribution.

)hoorporahon of Spatiotemporal Auloconetabonl

) Spatiotermnporally Constrained Modeling |

) Addressing Spatiotemporal Heterogeneity I

) Capturing Spabiotemporal Coherence I

)Co(nbmlng Temporal and Spatial Modeling |

Figure 2. Relative importance of spatial, temporal, and contextual features in the ISGN-Bike demand
forecasting model.
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Lastly, the explainable forecasts guide an
optimization of bike redistribution strategy.
Nodes or areas that are projected to be in high
demand but low supply as it currently is are
determined and redistribution schedules are
generated. The interpretability results can be
used to inform prioritization, enabling operators
to proactively adjust bikes in anticipation of the
occurrence of the surge due to weather, time of
the day, or geographic spillover. This forecast
and redistribution pipeline could be run in
periodic mode say at an hourly rate to aid near
real time operational decision making.

Experimental Setup and Results

Our assessment of ISGN-Bike is based on an
actual bike-sharing dataset of a major urban area,
in the same manner as other previous research.
The analysis involves a number of baseline
models, both purely temporal models (LSTM and
ARIMA), spatial-only models (GCN, which
assumes that there exist no temporal
correlations), and existing spatio-temporal
models (ST-BDP and STGA-LSTM). The measures
of model performance, such as Mean Absolute
Error (MAE), Root Mean Square Error (RMSE),
Mean Absolute Percentage error (MAPE),

Coefficient of Determination (R2) and
computational time per forecast are used to
evaluate model performance. The findings
indicate that the ISGN-Bike is always superior to
these benchmark models in all measures as the
model has lower MAE, RMSE, and MAPE, and high
R2 values, similar or higher to those of the state-
of-the-art models in the literature. The latter can
be explained by the fact that the space and time
modeling modules are utilized together, and the
contextual data is also integrated. Moreover, the
interpretability analyses reveal significant
patterns in the predictions: time-related
attributes like hour-of-day and day-of-week are
influential especially in the morning peak hours,
weather variables have a greater influence on
rainy days, and spatial spillover on the adjacent
zones lead significantly to the predicted demand
growth at particular stations, which
demonstrates the flow of demand originated in
the neighboring areas.

These observations are consistent with domain
knowledge (e.g. commuter peaks, weather
impacts, spillover), confirming that the model
does not simply memorize patterns but
understanding that there is some significant
dynamism.

Table 2. Quantitative comparison of forecasting models evaluated on real-world bike-sharing data.

MAPE 2
Model MAE RMSE (%) R
ARIMA 7.84 12.15 31.40% 0.61
LSTM (temporal-only) | 6.21 10.02 27.30% 0.73
GCN (spatial-only) 5.98 9.64 25.10% 0.76
ST-BDP 4.87 8.13 19.70% 0.84
STGA-LSTM 4.53 7.68 18.90% 0.86
ISGN-Bike (Proposed) | 3.94 6.82 15.60% 0.91

Additionally, a figure could illustrate demand Advantages:

predictions vs. actual demand over time for
selected stations, plus a heatmap of spatial
contribution  (which  neighboring  zones
contributed most), and a bar chart of feature
importances (weather vs. temporal vs. demand
history).

Discussion

The results support our hypothesis that
combining spatio-temporal graph neural
networks with interpretable mechanisms yields
both high forecasting accuracy and actionable
insights — essential for real-world bike-sharing
operations.

1. Better forecasting precision: The model
is able to forecast complex dynamics of
demand as it simultaneously models both
the spatial dependencies with the time
trends and exogenous factors, unlike
when the model is purely either temporal
or spatial.

2. Interpretability: Operators can know the
reasons why the demand is expected to
increase or decrease to cause trust, debug,
and make a decision. Spatial contribution
maps can be wused to plan the
redistribution of bikes in a more precise
way.
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3. Real-time readiness: The model can
produce near-real-time predictions that
can be wuseful to perform regular
rebalancing, with the help of an efficient
graph + convolutional /temporal
architecture.

4. Flexibility and extensibility: It is open to
adding additional data (e.g., the land-use
data, events, and public transit ridership
data, holidays, etc.) to enhance prediction
and account for special situations or
anomalies.

Challenges & Limitations

Spatio-temporal graph neural networks models
are based on data availability and quality when it
comes to forecasting demand in bike-sharing. A
prediction cannot be accurate without rich
cleansets of past demand, between-station
spatial relationships, weather, land-use and
other contextual information; the latter is not
available in all cities. Another difficult problem is
scalability, especially when the number of
stations in a large city is in the thousands: graph
representations and computations may become
computationally demanding. Although zones or
grid cell aggregation of stations can help to
economize computation, zone-based prediction
could impact prediction granularity. Moreover,
the interpretability and the complexity of the
model are intrinsically related: it can be seen that
the addition of more sophisticated mechanisms,
like attention or Transformer modules, can be
more predictive, but also more opaque and
expensive to run in real-time, so their use can be
constrained. Lastly, cross-city generalization is a
very important issue because the spatial and
demand patterns are affected by local culture,
climatic conditions, commute and topology of
cities. The fact that the models, trained in one
city, will not work efficiently in another without
retraining or adapting to the environment is why
flexible and context-aware approaches are
needed.

Conclusion

This paper introduces an interpretable spatio-
temporal graph neural network-based demand
forecasting conceptual framework, dubbed ISGN
Bike, of bike sharing systems. Through merging
the graph-based spatial modeling, dynamics of
time, contextual characteristics, and
interpretability, the framework will not only
foresee it correctly, but also to provide clear and
actionable information that will inform real-time
resource optimization.

Since the number of cities with bike-sharing
systems is growing all over the world and
operations of these systems are characterized by

problems  (imbalanced  provision, poor
utilization, customer dissatisfaction), these
interpretable forecasting models can be
instrumental in enhancing efficiency,
sustainability, and user satisfaction.

The next step in work should be the deployment
of this framework to a working bike sharing
system and assessment of its operational
advantages (including the reduction in idle bike
count, availability, user satisfaction) and
expanding interpretability tools (e.g., operator-
friendly interactive dashboards).
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