

Archives available at journals.mriindia.com

International Journal on Advanced Electrical and Computer Engineering

ISSN: 2349-9338 Volume 14 Issue 01, 2025

Language Learning Assistant

Prof. Dhanshri Deshmukh¹, Ms. Vaishnavi Mishra², Ms. Shradha Sathe³, Ms. Urvashi Selokar⁴

- ¹⁻⁴Department of Computer Engineering, SCET, Nagpur, Maharashtra, India
- ¹dhanshrideshmukh720@gmail.com (9922532157)
- ²vaishnavimishra967@gmail.com (9529589478)
- ³shradhasathe16@gmail.com (9561467312)
- ⁴uravashiselokar16@gmail.com (7588532755)

Peer Review Information

Submission: 07 Feb 2025 Revision: 16 Mar 2025 Acceptance: 18 April 2025

Keywords

Artificial Intelligance Natural Language Processing Intelligent Tutorial System Computer-Assisted Language Learnina

Abstract

This study introduces an innovation AI-powered language learning assistant designed to accelerate second-language acquisition by offering personalized learning pathway. By integrating advanced Natural Language Processing (NLP) and machine learning algorithms, the system delivers real-time feedback, dynamic interactive exercises, and adaptive learning recommendations tailored to each learner's unique needs. A mixed-method evaluation-combining user surveys with performance tracking-demonstrates marked improvement in key areas: vocabulary acquisition, pronunciation accuracy, and contextual language understanding. These finding underscore the potential of AIdriven assistant to engage learners more effectively and enhance language fluency. Future direction for this research include refining adaptive feedback mechanisms and expanding multimodal learning support to further optimize personalized language education, paving the way for more immersive and responsive language learning experiences.

Introduction

Language acquisition is a complex and demanding process that requires continuous effort, practice, and engagement. Traditional language learning approaches often employ standardize methods fail to accommodate diverse learning styles and individual preferences, limiting their overall effectiveness. To overcome these challenges, we propose an innovative AI-driven language learning assistant designed to deliver personalized learning pathways and adaptive feedback. Advancements in artificial intelligence (AI) and natural language processing (NLP) have transformed language education by enabling interactive, adaptive, and customized learning experiences.AI-powered assistant can offer real-time feedback, contextual understanding, and immersive exercises, fostering greater learner engagement and improving proficiency. However, language learning assistant frequently struggle with key limitations, including inadequate adaptability, ineffective feedback mechanisms, and insufficient contextual awareness. This paper introduces a novel framework that integrates state-of-the-art AI and NLP techniques to create an intelligent, responsive, and highly personalized language learning environment. By bridging these gaps, our research aims to enhance the efficacy of AI-driven language learning tools and contribute to the evolution of more interactive, English Language acquisition is a complex and demanding process that requires continuous effort, practice, and engagement. Traditional language learning approaches often employ standardized methods that fail to

accommodate diverse learning styles and individual preferences, limiting their overall effectiveness. To overcome these challenges, we propose an innovative AI-driven language learning assistant designed to deliver personalized learning pathways and adaptive feedback. Advancements in artificial intelligence (AI) and natural language processing (NLP) have transformed language education by enabling interactive, adaptive, and customized learning experiences. AI-powered assistants can offer real-time feedback, contextual understanding, and immersive exercises, fostering greater learner engagement and improving proficiency. However, existing language learning assistants frequently aging, and effective language acquisition methodologies. The findings provide valuable insights into the role of AI and NLP in shaping the future of language education.

Robotic Process Automation (RPA)

utilizes AI-driven software bots to replicate human actions within digital environments, automating repetitive tasks such as logging into systems, transferring data, managing emails, and filling out forms. Through developer-defined instructions like screen recording or variable assignments, RPA interacts with user interfaces by identifying elements, rather than relying on static methods like screen coordinates or XPath, offering a more dynamic and flexible automation solution. Since its surge in 2016, RPA has been applied in industries ranging from digital forensics to auditing and business operations. The rise of Industry 4.0 has accelerated its adoption, allowing RPA to automate rule-based tasks using data from connected devices. In business, RPA significantly enhances efficiency and reduces operational costs, cutting expenses by 30% to 50% in areas such as shared services and transactional workflows. With its "outsidein" approach, RPA works seamlessly atop existing infrastructure, making it an appealing, lowdisruption automation solution for organizations seeking optimization without process overhauling their IT systems.

Artificial Intelligence and Industry

Artificial Intelligence (AI) has transitioned from a collection of specialized domains like natural language processing, robotics, and computer vision, into a comprehensive set of core principles driving modern innovations across industries. Within the context of Industry 4.0, AI plays a pivotal role in enabling machines to execute complex tasks, reduce operational costs, and elevate product and service quality—core elements of smart factory systems. By integrating cyber-physical systems, AI is revolutionizing manufacturing, seamlessly merging physical and

virtual realms to enhance production flexibility, efficiency, and responsiveness. AI tackles contemporary manufacturing challenges, such as meeting personalized demands, accelerating time-to-market, and managing the growing number of sensors in production equipment. AIdriven robots, equipped with adaptability, allow manufacturers to swiftly adjust to varying production needs, boosting efficiency and versatility. Additionally, AI-powered techniques like data mining analyze vast streams of real-time data from production sensors, facilitating smarter decision-making, optimized workflows, and rapid responses to dynamic conditions. In essence, AI isn't just refining manufacturing—it's transforming it into a "smart" process, increasing agility, efficiency, and overall production capability.

RPA Tools With IA Support

The fusion of Artificial Intelligence (AI) and Machine Learning (ML) with Robotic Process Automation (RPA) has significantly expanded the scope of automation, enabling it to handle more complex tasks across industries such as commerce, manufacturing, and digital services. ML, which mimics human learning, enhances RPA by enabling it to process data more effectively using techniques like connectionism, genetics, and statistics. This integration empowers RPA to go beyond simple task automation, allowing it to classify, categorize, optimize, and recognize patterns within large datasets. In areas such as Enterprise Resource Planning (ERP), accounting, and human resources, AI-driven RPA systems can now make intelligent, data-backed decisions to improve business processes, audits, and productivity. Research and case studies from consulting firms like Deloitte highlight the transformative potential of combining RPA with AI, showing how it enhances accuracy in tasks like categorization, routing, and process management, ultimately improving customer and employee experiences. Moreover, AI-powered RPA helps streamline data analysis, reduce fraud risks, and ensure regulatory compliance. However, to achieve the greatest impact, these advanced systems should be applied to well-established, stable processes, particularly in strategic areas such as customer service and workforce management. As both commercial and open-source RPA tools increasingly integrate AI, they offer more dynamic, adaptable, and intelligent automation solutions capable of meeting complex business demands.

ARTIFICIAL INTELLIGENCE IN ENGLISH LANGUAGE TEACHING (ELT)

Artificial Intelligence (AI) is playing an increasingly vital role in English Language Teaching (ELT), particularly through frameworks like Intelligent Computer-Assisted Language Learning (ICALL), which blends AI with machine learning to make language learning more efficient and engaging. As technology evolves, AI tools are being seamlessly incorporated into ELT, offering advantages such as personalized learning experiences, increased motivation, and improved accessibility. A key component driving this innovation is Natural Language Processing (NLP), which allows machines to comprehend and produce human language. By utilizing NLP, AI-powered learning tools like chatbots, virtual tutors, and educational games mimic human interaction, providing real-time feedback on language skills such as vocabulary, grammar, and pronunciation. Popular AI-based platforms, including Duolingo, Babbel, Rosetta Stone, and even virtual assistants like Google Assistant, adapt learning content based on performance data to meet individual learners' needs, proficiency levels, and learning styles. These personalized experiences foster greater learner autonomy, enabling students to independently and at their own pace. Ultimately, AI integration in ELT is transforming traditional language learning, creating a more dynamic, interactive, and tailored environment that enhances both the process and outcomes of acquiring English skills.

BENEFITS OF USING AI IN ENGLISH LANGUAGE TEACHING

AI technologies bring numerous benefits to English Language Teaching (ELT), significantly enriching both the learning and teaching processes. For students, AI offers highly personalized learning by tracking their progress and delivering lessons tailored to their specific needs, abilities, and learning preferences something hard to replicate in traditional classrooms. This customization fosters independent learning, boosting both the speed and effectiveness with which learners develop language skills. In addition to personalized lessons, AI tools provide instant feedback on critical areas like vocabulary, grammar, pronunciation, and writing, enabling swift identification and improvement of weak points, which accelerates overall language proficiency. The accessibility of AI-driven platforms, available on mobile apps or online, allows students to study at their own pace and convenience, often at a lower cost than conventional language courses. Al also helps create an engaging learning atmosphere by incorporating interactive and

gamified elements, which keep students motivated—something that can be challenging in traditional settings. Additionally, AI promotes cultural understanding by exposing learners to simulations of real-world situations, customs, and practices, enriching their global perspective. For teachers, AI tools enhance productivity and creativity, allowing for the development of more dynamic and individualized lesson plans. By using AI analytics, educators can easily monitor student progress and adjust content to suit individual needs. AI also automates repetitive tasks such as grading and lesson planning, freeing up time for teachers to focus on creating a more engaging classroom environment. Lesson development is streamlined with programs like, Canva Magic Write, and Quizizz, which increase productivity and decrease time. In conclusion, the integration of AI into ELT not only personalizes the learning experience but also enhances teaching efficiency, leading to improved educational outcomes for both students and teachers.

METHODOLOGY

This section outlines the approach employed in this study. A review of recent literature reveals that scholars commonly address study design by discussing aspects such as sampling, data collection techniques, and data analysis strategies. In this study, the methodology has been adapted and refined based on the content analysis framework proposed by [Author/Source].

Research Methodology

The research adopts a qualitative approach, with a primary emphasis on Content Analysis. Content analysis is employed to systematically examine and interpret written texts to uncover underlying themes and patterns. According to Fraenkel et al. (Year), this method is applicable to a wide range of written materials, such as textbooks, essays, and academic journals. In the present study, the focus is on scholarly articles, as they offer the most authoritative and relevant insights into the integration of AI-powered Google Assistant in second language acquisition and pedagogy.

Selection of Research Articles

The selection criteria for research articles are defined to ensure the relevance and credibility of the sources. Articles are retrieved from established, high-quality academic databases, including Scopus, Google Scholar, and Web of Science. These platforms are chosen for their reliability and their access to peer-reviewed, scholarly publications, in contrast to general web search engines like Yahoo or Bing, which may offer less authoritative sources. Additionally, the

study emphasizes research published within the last five years, ensuring that the findings reflect the latest advancements in the application of AI technologies in language learning. The primary aim is to gather the most recent and relevant data on the use of AI-powered tools, specifically Google Assistant, in second language education.

DATA COLLECTION PROCEDURES

The data collection process for this study is organized into four distinct stages:

• Identifying Appropriate Databases

The initial stage involves selecting the most suitable databases for sourcing relevant research articles. For this study, databases such as Scopus, Google Scholar, and Web of Science are chosen due to their established academic credibility and reliability.

• Identifying Relevant Publications

In the second stage, the researcher reviews publications that are directly relevant to the study's focus. Only those articles that specifically discuss the role and enhancement of AI-powered Google Assistant in second language teaching and learning are included, ensuring that the gathered data directly addresses the research question.

• Material Review and Integration

The third stage involves a comprehensive review and integration of the selected articles. Each article is carefully examined to extract significant findings regarding the use of AI-powered Google Assistant in language education, ensuring a deep understanding of its application.

• Final Interpretation

Final Clarification Analysing the synthesized content and deriving insightful findings from the content analysis constitute the last phase. In order to provide answers to the study's research question, this phase is crucial for spotting new trends, patterns, and any gaps in the body of previous research.

RESEARCH FINDINGS

AI-Powered Google Assistant in Language Teaching and Learning

This review examines how AI-powered Google Assistant (GA) has been leveraged for language teaching and learning. The research reveals four central themes, which are summarized as follows:

Google Assistant as a Tool for Natural Language Processing

Google Assistant has proven to be an effective interactive resource for language learners,

thanks to its advanced natural language processing capabilities that facilitate real-time communication. Both children and adults engage with GA to practice a second language. A study conducted in 2020 found that students viewed GA as a motivating tool for learning English, with participants particularly appreciating its clear pronunciation and ease of comprehension. Higher-level learners. in particular, demonstrated improved comprehension during (Chen et al., interactions 2020). technological features provide an engaging and interactive alternative to traditional language learning methods.

Advancing Listening, Speaking, and Reading Skills

GA has shown significant promise in enhancing a variety of language skills, particularly in speaking, listening, and reading. Chen et al. (2020) found that learners reported increased motivation to focus on vocabulary and pronunciation when using GA. Additionally, students expressed feeling less anxious about practicing English with GA compared to conventional classroom settings. Research by Sing et al. (2019) also highlighted GA's positive effect on reading comprehension, as it helped learners accurately and efficiently answer questions. The interactive nature of GA allows learners to practice language skills in a lowpressure, self-paced environment, which is beneficial for language acquisition.

Personalized Learning and Anxiety Reduction

One of the key advantages of GA is its ability to create a personalized learning experience that helps alleviate anxiety, particularly for shy or reserved learners. A 2020 study revealed that using GA boosted learners' confidence in their English abilities. The private, non-judgmental nature of human-machine interaction allowed learners to practice without embarrassment. This tailored learning approach, with feedback customized to each learner's progress, resulted in a 77.68% reduction in anxiety among participants (Tai & Chen, 2020). Overall, GA fosters a safe, encouraging environment that supports active language learning.

Support for Learners with Intellectual and Multiple Disabilities

GA has also proven to be an invaluable communication tool for individuals with intellectual and multiple disabilities. Research has shown that, when paired with mobile phones and voice recording devices, GA enables these learners to independently access various forms of stimulation. In intervention studies,

participants successfully used GA to make phone calls, send messages, and participate in leisure activities—tasks that were not feasible in baseline sessions without GA (Lancione et al., 2020). Both users and caregivers have praised

the technology for its accessibility, highlighting its potential as an inclusive, user-friendly communication aid for individuals with disabilities.

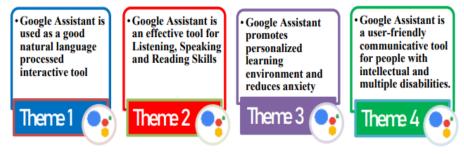


Figure 1. Framed themes as findings for the analysis of articles

FLOWCHART

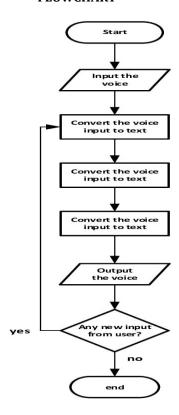


Figure 2: Data Flow Diagram

CONCLUSION

This study examined the role of AI-powered Robotic Process Automation (RPA) in ERP-related workflows, drawing insights from a variety of corporate sources, blogs, and scientific digital libraries. We explored both proprietary RPA tools (such as UiPath, Kofax, Automation Anywhere, and Win Automation) and open-source alternatives (like Assist Edge and Automagica), assessing their functionalities, ERP integration capabilities, and available support. Our analysis reveals that most proprietary RPA platforms incorporate advanced AI techniques,

including computer vision (e.g., neural networks for image recognition), statistical modeling, decision trees, and fuzzy logic. These technologies improve process efficiency, knowledge extraction, and the overall user experience through techniques like text mining, natural language processing, recommendation systems. Within the larger framework of Industry 4.0, the convergence of IoT, intelligent automation, and cyber-physical systems is revolutionizing industrial processes. By integrating AI with RPA, businesses are unlocking more intelligent and efficient automation solutions, transforming digital workflows and advancing operational capabilities to new levels of effectiveness.

ACKNOWLEDGEMENT

I am deeply grateful to the language learning assistant for its exceptional support in advancing my language abilities. With its ongoing guidance, tailored feedback, and constant encouragement, I've gained a profound understanding of the language and achieved substantial progress. This tool has played a pivotal role in my learning journey, helping me navigate challenges and remain motivated throughout.

References

Wei, L. (2023). Artificial Intelligence In Language Instruction: Impact On English Learning Achievement, L2 Motivation, And Self-Regulated Learning. Frontiers In Psychology, 14, 1261955, 1-14. https://Doi.org/10.3389/Fpsyg.2023.126195

Rebolledo Font De La Vall, R., & González Araya, F. (2023). Exploring The Benefits And Challenges Of AI-Language Learning Tools. International Journal Of Social Sciences And Humanities Invention, 10(1), 7569–7576. Https://Doi.0rg/10.18535/ljsshi/V10i01.02

Huang, X., Zou, D., Cheng, G., Chen, X., & Xie, H. (2023). Trends, Research Issues And Applications Of Artificial Intelligence In Language Education. Educational Technology And Society, 26(1), 112-131.

Https://Doi.0rg/10.30191/ETS.202301_26(1).00

Lestari, S., Usadiati, W., & Misrita, M. (2022). The Correlation Between Students' Artificial Intelligence And Their English Reading Skills Achievement. Bahasa: Jurnalkeilmuan Pendidikan Bahasa Dan Sastra Indonesia, 3(2), 103–111. Https://Doi.0rg/10.26499/Bahasa.V3i2.110

Hapsari, I. P., & Wu, TT. (2022). AI Chatbots Learning Model In English Speaking Skill: Alleviating Speaking Anxiety, Boosting Enjoyment, And Fostering Critical Thinking. Lecture Notes In Computer Science, 13449, 444- 453. Https://Doi.0rg/10.1007/978-3-031-15273-3_49

Godwin-Jones, R. (2022). Partnering With AI: Intelligent Writing Assistance And Instructed Language Learning. Language Learning & Technology, 26(2), 5-24. Https://Doi.Org/Http://Doi.Org/10125/73474 Crist, R. (N.D.). Everything You Need To Know About Amazon's Alexa. CNET. Retrieved November 12, 2022, From

Https://Www.Cnet.Com/Home/Smart-Home/Amazon-Alexa-Device-Compatibility-How-Tos-And-Much-More/

Stewart, J. C., Davis, G. A., & Igoche, D. A. (2020). Ai, Iot, And Aiot: Definitions And Impacts On The Artificial Intelligence Curriculum. Issues In Information Systems, 21(4), 135-142. Https://Doi.0rg/10.48009/4_Iis_2020_135-142

Sharples, M. (2022). Automated Essay Writing: An AIED Opinion. International Journal Of Artificial Intelligence In Education, 32, 1119-1126. Https://Doi.0rg/10.1007/S40593-022-00300-7

Godwin-Jones, R. (2022). Partnering With AI: Intelligent Writing Assistance And Instructed Language Learning. Language Learning & Technology, 26(2), 5-24. Https://Doi.Org/Http://Doi.Org/10125/73474

Gayed, J. M., Carlon, M. K. J., Oriola, A. M., & Cross, J. S. (2022). Exploring An AI-Based Writing Assistant's Impact On English Language Learners. Computers And Education: Artificial Intelligence, 3, 100055. Https://Doi.0rg/10.1016/J.Caeai.2022.100055

Ali, Z. (2020). Artificial Intelligence (AI): A Review Of Its Uses In Language Teaching And Learning. IOP Conference Series: Materials Science And Engineering, 769(1). Https://Doi.0rg/10.1088/1757-899X/769/1/012043

Kofax (2019). Product Summary Kofax RPA. [Online]. Available From: Https://Www.Kofax.Com/-/Media/Files/Datasheets/EN/Ps_Kofaxrpa_En.Pd f

Huang, F., & Vasarhelyi, M. A. (2019). Applying Robotic Process Automation (RPA) In Auditing: A Framework. INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 35. Https://Doi.0rg/10.1016/J.Accinf.2019.100433

Asquith, A., & Horsman, G. (2019). Let The Robots Do It!-Taking A Look At Robotic Process Automation And Its Potential Application In Digital Forensics. Forensic Science International: Reports, 1, 100007

Moffitt, K. C., Rozario, A. M., & Vasarhelyi, M. A. (2018). Robotic Process Automation For Auditing. Journal Of Emerging Technologies In Accounting, 15(1), 1-10

Zheng, P., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., Mubarok, K., ... & Xu, X. (2018). Smart Manufacturing Systems For Industry 4.0: Conceptual Framework, Scenarios, And Future Perspectives. Frontiers Of Mechanical Engineering, 13(2), Pp:137-150. Williams, D., & Allen, I. (2017). Using Artificial Intelligence To Optimize The Value Of Robotic Process Automation. Available From: Https://Www.lbm.Com/Downloads/Cas/KDKAAK 29

E. Global (2017). Automating Content-Centric Processes With Artificial Intelligence. [Online]. Available From: Https://Www.Automationanywhere.Com/Images /Lp/Pdf/