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Abstract 
 
The Smart Energy Tracker is a web-based IoT and machine learning 
system for real-time monitoring and prediction of household 
electricity consumption. By integrating an ESP32 NodeMCU with 
ZMPT-101B and ACS712 sensors, the system transmits data to a server 
for visualization and analysis. Machine learning models predict 
electricity bills, while anomaly detection algorithms identify irregular 
consumption patterns. This system addresses energy challenges in 
India, where 70% of electricity is derived from coal and households 
contribute to 25% of the demand. The tracker encourages efficient 
electricity usage, contributing to emission reduction goals and 
promoting sustainability. Prototype testing demonstrated high 
prediction accuracy and reliable monitoring capabilities. The system’s 
performance underscores its potential to reduce financial costs 
associated with energy consumption and minimize environmental 
impacts. By enabling accurate forecasting and timely identification of 
abnormal usage, the Smart Energy Tracker supports both economic 
and environmental benefits at the household level. This approach 
offers a scalable solution to enhance energy efficiency and reduce the 
carbon footprint of residential electricity consumption. 

 
INTRODUCTION 
Global energy demand is rising rapidly, driven by 
population growth and economic expansion [1]. 
According to the U.S. Energy Information 
Administration, global energy use and associated 
CO₂ emissions will continue increasing through 
2050, as efficiency gains lag behind industrial 
growth [3]. Electricity and heat generation, mainly 
from fossil fuels, account for about one-third of 
greenhouse gas emissions. At the household level, 
inefficiencies persist: studies show real-time 
feedback can reduce residential energy use by 

about 9%, highlighting the need for affordable, 
user-centric monitoring solutions [11]. 
In India, the challenge is especially severe. 
Electricity demand is surging as 1.4 billion people 
adopt more appliances, yet around 70% of 
electricity still comes from coal, making India's grid 
highly carbon-intensive [7]. As the world's third-
largest emitter, India faces the dual challenge of 
meeting rising household demand while reducing 
emissions. Improving residential energy efficiency 
is thus critical for sustainability and climate goals 
[4]. 
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Global and national trends increasingly emphasize 
smart energy and sustainability [3]. Concepts like 
smart homes and smart cities are advancing 
worldwide through IoT devices, advanced 
metering, and data analytics that provide real-time 
insights into energy use [5]. These efforts align 
with international goals such as the UN's 
Sustainable Development Goals for clean and 
affordable energy. In India, policies like the 
National Action Plan on Climate Change (NAPCC, 
2008) and the Smart Cities Mission (2015) 
promote energy efficiency and smart 
infrastructure [4]. These initiatives highlight an 
urgent need for consumer-level technologies that 
enable households to manage electricity 
intelligently and support India's climate and urban 
development goals. 
To address these needs, Smart Energy Tracker 
offers a web-based IoT and machine learning 
platform for real-time household electricity 
monitoring and sustainability awareness]. Its key 
contributions include: 
 
1) Real-time monitoring: A low-cost hardware 

setup (ESP32 NodeMCU, ZMPT-101B voltage 
sensor, ACS712 current sensor) continuously 
measures and streams household electricity 
data to the cloud [8]. 

2) Bill prediction using ML: Predictive models 
forecast future electricity bills from historical 
usage, helping users plan and optimize 
consumption [2]. 

3) Anomaly detection and alerts: The system 
detects unusual consumption patterns and 
triggers early warnings for potential hazards 
[9]. 

4) Web-based visualization: An interactive 
dashboard displays real-time and historical 
usage through charts and summaries, 
supporting informed decision-making [5]. 

5) Environmental education: A sustainability 
module offers tips and insights to promote 
energy conservation and eco-friendly 
practices [4]. 

Together, Smart Energy Tracker integrates real-
time sensing, analytics, and user engagement to 
advance energy efficiency and sustainability. 
 
RELATED WORK 
Various research and commercial systems now use 
IoT sensors or smart meters for real-time 
household electricity monitoring. Nest’s smart 
thermostat, for example, displays an “Energy 
History” and marks energy-efficient days with a 
green “Leaf” icon [3], [12]. The Sense home energy 
monitor samples mains current at approximately 

1 MHz, using on-device machine learning to 
disaggregate load. Cloud platforms like Bidgely’s 
UtilityAI analyse smart-meter data to infer 
appliance usage. Research prototypes, such as 
Nachimuthu et al. 's NodeMCU/ESP8266-based 
meter with PZEM sensors, stream live data to 
ThingSpeak for online monitoring [8]. These efforts 
demonstrate that affordable IoT setups can enable 
real-time tracking of home energy consumption 
through apps and dashboards [1], [12]. 
Beyond monitoring, machine learning has been 
widely used to forecast future electricity use from 
historical data [14]. Techniques like regression 
models, support-vector methods, tree ensembles, 
and deep neural networks have been explored. 
Recurrent neural networks (RNNs), especially 
LSTM models, have proven effective for time-series 
forecasting, such as predicting short-term building 
consumption. These models consider past usage 
and factors like weather to estimate future 
demand, helping households plan and budget. 
Commercial platforms also use similar predictive 
techniques. Overall, prior work shows that ML-
based forecasting greatly improves the accuracy of 
household energy predictions [2], [14]. 
Modern energy systems often include anomaly 
detection, notifications, and automated controls to 
prevent energy waste and hazards. In commercial 
buildings, automated management systems flag 
unusual patterns and alert managers. At home, 
smart products like Schneider Electric’s Sense 
monitor identify abnormal loads that could signal 
electrical faults [3], [13]. Research also shows non-
intrusive sensing combined with event detection 
can spot appliance failures and trigger alerts or 
shut-offs [9]. Many smart home platforms allow 
automated actions, like turning off faulty devices 
[6]. These approaches highlight the importance of 
integrating real-time monitoring with analytics to 
improve safety and efficiency. 
A key part of smart energy systems is engaging 
users through environmental feedback. Solutions 
like Google’s Nest Home Report show energy 
savings and pollution reduction estimates, using 
gamified feedback (e.g., points, badges) to 
encourage efficient behavior [1]. Studies show that 
detailed mobile and web dashboards significantly 
help households reduce consumption [3]. National 
programs also use tips and carbon footprint 
visualizations to promote sustainability [4]. While 
previous work addressed IoT monitoring, ML 
prediction, anomaly detection, and eco-feedback 
separately, Smart Energy Tracker unifies them into 
one platform. It combines low-cost IoT sensing, 
ML-based billing forecasts, anomaly alerts, and 
sustainability education—designed specifically for 
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Indian households—to offer a comprehensive, 
user-centric energy management solution [5], [9]. 
 
METHODOLOGY 
The Smart Energy Tracker employs a layered IoT 
architecture that integrates household sensors 
with cloud-ready backend services and a web-
based interface. Data from electrical and 
environmental sensors is transmitted via MQTT to 
a central broker, which facilitates efficient 
communication between devices without direct 
device-to-device links. The system processes and 
analyzes this data using machine learning models, 
forecasting electricity consumption and identifying 
anomalies. A time-series database stores the 
collected data, enabling real-time monitoring, 
trend analysis, and alert generation through a user-
friendly web application. The modular design 
supports scalability, allowing it to be deployed in 
larger residential or community setups. 

Smart Energy Tracker uses a layered IoT 
architecture, linking household sensors with cloud-
ready backend services and a web-based interface 
[1]. Sensors publish voltage, current, and power 
data via MQTT to a central broker (e.g., Raspberry 
Pi running Mosquitto), enabling simple, efficient 
communication without direct device-to-device 
links [8]. The broker forwards data to the backend, 
where it is logged, processed, and analyzed using 
machine learning models [2]. A time-series 
database stores the data, supporting real-time 
dashboards, historical trends, alerts, and 
environmental metrics via the web application [6]. 
Although our prototype uses a local server for a 
single household, the modular, cloud-compatible 
design can scale to larger deployment. Fig. 1 shows 
the overall architecture of the Smart Energy 
Tracker system. 

 
Fig. 1. Architecture of the Smart Energy Tracker system. 

 
The sensor network uses electrical and 
environmental sensors connected to 
microcontrollers (MCUs) for data acquisition [1], 
[16]. ESP32-based meters sample non-invasive 
current transformers (e.g., ZMCT103C) and voltage 
sensors (e.g., ZMPT101B) to compute real power, 
while digital sensors (e.g., DHT22) monitor 
ambient conditions like temperature and humidity. 
Each MCU publishes readings as MQTT messages at 
regular intervals, adding timestamps for 
synchronization and ensuring reliable delivery 
with QoS 1 over Wi-Fi [4]. Following IoT best 
practices, multiple ESP32 clients send real-time 
metrics (voltage, current, power) to a local MQTT 
broker. Data validation occurs on arrival, and MCU 
firmware includes calibration offsets for accurate 
SI unit readings. If disconnected, MCUs cache data 
for retransmission. Using standard MQTT topics 

and JSON payloads, the network easily 
accommodates new sensors [5]. 
The backend server manages data ingestion, 
storage, processing, and user services. As MQTT 
messages arrive, a Python/Node.js client parses 
JSON payloads and stores data in a MySQL database 
(e.g., time, voltage, current, power, deviceID) [6]. 
Simultaneously, data feeds into ML prediction 
models and anomaly detectors. 
The server provides a RESTful API (secured with 
HTTPS) for the web interface, enabling queries for 
usage data, forecasts, and alerts [6]. MQTT 
connections use TLS encryption (MQTTS), and 
database storage follows best security practices, 
including encrypted filesystems and salted 
password hashes. Access to APIs is restricted 
through authentication (e.g., JWT tokens). 
In the prototype, all services (broker, subscriber, 
ML, database, web server) run locally, but the 
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architecture supports cloud migration and scaling 
through containerization and distributed 
deployment, making it suitable for larger 
residential or community setups [3]. 
 
The system uses supervised learning to forecast 
short-term electricity consumption, employing a 
Random Forest Regressor trained on historical 
data with features like time of day, day of week, 
temperature, and recent loads [2], [9]. Random 
Forest was chosen for its robustness, ability to 
capture non-linear patterns, and fast parallel 
training, outperforming many other methods in 
energy forecasting. 
We implement the model using scikit-learn, 
splitting the dataset into training and validation 
sets and tuning hyperparameters like tree count 
and depth. Feature importance scores help 
interpret influential factors. Forecasts are stored, 
compared against actual usage for accuracy 
monitoring, and visualized in the web UI alongside 
real consumption [10]. 
 
An anomaly detection module analyses incoming 
consumption data to identify irregular or 
hazardous conditions. We use a two-pronged 
approach: (1) rule-based alerts with predefined 
safety thresholds (e.g., maximum current limits, 
high temperature warnings) and (2) machine 
learning–based detection using an Isolation Forest 
trained on normal usage patterns [9]. 
The system assigns anomaly scores to new data 
points, triggering alerts when thresholds are 
exceeded. This helps detect issues like faulty 
appliances, overheating, or energy theft. Flagged 
anomalies immediately generate email or push 
notifications and are highlighted on the web 
dashboard, enhancing system safety and reliability 
[6]. 
 
The user-facing component is a responsive web 
app that provides secure login and interactive 
dashboards [1], [18]. It fetches data from backend 
APIs to visualize energy usage, predictions, and 
sensor readings. After authentication, the home 
screen shows a dashboard with current 
consumption, recent time-series plots, and 
summaries of usage [6]. 
Interactive charts, using Highcharts or Chart.js, 
show consumption curves with confidence 
intervals and anomalies marked. Users can set alert 

thresholds and notification preferences. The app is 
responsive, ensuring a consistent experience 
across devices. The design emphasizes usability 
with color-coded feedback and tooltips, making the 
data easy to understand and act upon [8]. 
 
The system connects energy consumption to 
environmental impact, promoting sustainability. It 
converts usage into carbon footprint terms (e.g., "5 
kWh equals ~3.5 kg of CO₂"), offering comparisons 
like "equivalent to driving 15 km" or "trees needed 
to sequester CO₂" [7], [20]. 
The system also provides real-time feedback on 
savings, estimating costs and avoiding emissions 
when usage is below a target. It suggests energy-
saving tips based on real-time data, integrating 
environmental metrics into energy monitoring [4]. 
 
The initial prototype is deployed in a single-family 
home using local hardware[19]. Services like the 
MQTT broker, data processor, database, and web 
server run on a dedicated home server (e.g., 
Raspberry Pi or Linux PC) connected to the local 
network. Sensors communicate via Wi-Fi, and all 
components work offline, avoiding cloud costs and 
keeping data private. Remote access for 
maintenance is enabled through VPN or SSH. 
For future scaling, the system supports cloud or 
distributed deployment, leveraging 
containerization (e.g., Docker Compose, 
Kubernetes Helm) for consistent and scalable 
service. The modular architecture is suitable for 
larger smart grid projects [5]. 
 
RESULTS AND EVALUATION 
 
System Performance 
The Smart Energy Tracker prototype was 
evaluated based on real-time data acquisition 
latency, prediction accuracy, and alert 
responsiveness [6]. 
The IoT sensors (ACS712 for current and 
ZMPT101B for voltage) interfaced with the ESP32 
NodeMCU microcontroller demonstrated an 
average data transmission latency of 
approximately 400–600 milliseconds over Wi-Fi to 
the backend server. The web application 
dashboard updated values with a refresh interval 
of approximately 1 second, offering responsive and 
smooth monitoring [8]. 
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Fig. 2. Smart Energy Tracker web dashboard. 

 
Fig. 3. Smart Energy Tracker web dashboard displaying daily consumption of household appliances. 

 
The system reliably captured variations in 
household electricity consumption, with a 
sampling rate of 1 reading per second. This 
granularity was sufficient to detect the activation 
and deactivation of most household appliances [8]. 
 
Prediction Performance 
The machine learning model for electricity bill 
prediction was trained on synthetic historical data 
derived from typical Indian household energy 
usage patterns [7]. 

A Random Forest Regressor model was selected for 
its robustness and superior performance with 
limited datasets [9]. Evaluation on the test set 
showed a Mean Absolute Percentage Error (MAPE) 
of approximately 7–10%, indicating high accuracy. 
Forecasted billing trends and historical 
consumption data were visualized through 
interactive graphs on the dashboard. 
 

 
Figure 4: Machine learning-based future electricity bill prediction shown on the user dashboard 
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This predictive insight enabled users to anticipate 
high energy costs and take proactive measures to 
reduce consumption [9]. 
 
Anomaly Detection and Alerts 
The anomaly detection module utilized statistical 
thresholding and rule-based techniques to identify 
sudden spikes or irregular patterns in electricity 
usage [1]. Alerts were triggered when real-time 
consumption deviated significantly (e.g., 30% 
higher than the baseline average for similar 
appliances). During system testing, the anomaly 
detection system achieved a hazard detection 
success rate of approximately 92% for simulated 
overcurrent and appliance malfunction events. 
The alert mechanism was implemented both as an 
on-dashboard notification and an optional email 
notification (if configured), enabling users to 
respond promptly to potential safety risks [2].. 
 
 

User Experience Feedback 
Although the project was at a prototype stage and 
a large-scale user study was not conducted, initial 
feedback from 10 test users (including peers and 
mentors) indicated: 
1) 90% found the real-time monitoring highly 

informative. 
2) 80% stated that predictive billing motivated 

them to be more conscious about electricity 
usage. 

3) 70% appreciated the inclusion of hazard alerts 
for device malfunctions. 

4) Some users suggested additional features such 
as appliance-specific breakdowns and push 
notifications for mobile devices. 

 
Table I presents a summary of the prototype 
system’s performance metrics, including latency, 
model accuracy, and user feedback. These values 
were derived from empirical testing and initial 
user trials conducted in a controlled environment. 

 
Table I System Performance And Evaluation Metrics 

Metric Value / Result Remarks 

Data Transmission 
Latency 

400–600 ms ESP32 → Server via 
MQTT 

Dashboard Refresh 
Interval 

1 second Near real-time updates 

Machine Learning 
Model 

Random Forest 
Regressor 

Forecasts electricity 
bills 

Prediction Accuracy 
(MAPE) 

7–10% Acceptable for monthly 
usage prediction 

Anomaly Detection 
Success Rate 

~92% Based on simulated 
abnormal usage 
scenarios 

User Feedback – 
Monitoring Usefulness 

90% positive 9 of 10 test users found 
it informative 

User Feedback – 
Predictive Billing 
Impact 

80% positive Encouraged 
preemptive usage 
adjustments 

User Feedback – 
Hazard Alerts 
Appreciation 

70% positive Found alerts useful for 
safety 

Carbon Emission 
Conversion Factor 

0.92 kg CO₂/kWh Based on India's 
energy mix [7] 
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Environmental Impact Insights 
The system incorporated visual indicators of 
environmental impact based on cumulative energy 
usage. For instance, the dashboard displayed the 
approximate CO₂ emissions equivalent to the 
household’s electricity consumption, using a 
conversion factor of 0.92 kg CO₂ per kWh—typical 
for India’s coal-dominated energy mix [4]. 
Users were encouraged to reduce their energy 
footprint, contributing towards India's national 
target of achieving net-zero emissions by 2070 [5]. 
 
CONCLUSION 
This paper presents the design and evaluation of 
Smart Energy Tracker, a web-based system that 
integrates IoT-based real-time electricity 
monitoring with machine learning for predictive 
analytics and hazard detection in household energy 
management [1], [6]. 
The system successfully monitors electricity usage, 
predicts future bills with minimal error, and 
detects irregular consumption patterns, 
empowering users to make informed energy 
decisions. 
Initial testing showed positive impacts on user 
behavior, promoting energy-conscious habits. By 
linking energy usage to environmental impact (e.g., 
CO₂ emissions), the system raises awareness about 
the consequences of excessive consumption, 
particularly in India, where electricity generation is 
largely fossil-fuel based [5], [7]. Tools like Smart 
Energy Tracker can drive behavioral change and 
energy conservation, supporting India’s 
sustainability goals. 
The prototype has some limitations, including 
aggregated consumption data and no appliance-
level monitoring. Future work will focus on 
appliance-level tracking, personalized predictions, 
mobile accessibility, and larger user studies. 
The project won First Place at Projectathon and 
was selected among the Top 50 projects at Mumbai 
University's Avishkar Research Convention [8]. 
In conclusion, Smart Energy Tracker empowers 
households to save costs, enhance electrical safety, 
and contribute to sustainability through IoT and 
machine learning. 
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