

Archives available at journals.mriindia.com

International Journal on Advanced Electrical and Computer Engineering

ISSN: 2349-9338

Volume 14 Issue 02, 2025

A Network-Centric Web Application for Dynamic Crop and Fertilizer Decision Support

Dilip P. Chavan

Kalpataru Research & Development, Pune

Email: dilip.chavan998799@gmail.com

Peer Review Information	Abstract
<p><i>Submission: 15 Nov 2025</i></p> <p><i>Revision: 10 Dec 2025</i></p> <p><i>Acceptance: 18 Dec 2025</i></p> <p>Keywords</p> <p><i>Smart Agriculture, Crop Prediction, Machine Learning, Random Forest, XGBoost, K-Nearest Neighbors (KNN), Fertilizer Recommendations, Real-time Data, IoT Integration, Soil Health, Environmental Parameters, Sustainable Farming, Mobile Application, Data-Driven Decisions, Agricultural Productivity.</i></p>	<p>The economy depends heavily on agriculture, and improving productivity and decision-making requires precise crop forecasting. In order to suggest the best crop, this project offers a crop prediction system that takes into account important environmental parameters like phosphorus, nitrogen, potassium, rainfall, humidity, temperature, and pH level. To examine the relationship between soil characteristics and environmental factors, the system makes use of machine learning algorithms, including Random Forest, XGBoost, and K-Nearest Neighbors (KNN), which are known for their high accuracy and resilience. These models help farmers make well-informed decisions by processing large datasets and producing accurate crop recommendations. By minimizing overfitting and effectively managing non-linear data, these models guarantee improved performance. Enhancing agricultural productivity, maximizing resource use, and promoting sustainable farming methods are the goals of this system.</p>

Introduction

Agriculture is the backbone of many economies worldwide, providing food, raw materials, and employment to millions of people. However, unpredictable weather patterns, soil conditions, and climate change have made farming increasingly challenging.

Farmers often struggle to select the most suitable crops due to a lack of precise knowledge about soil conditions, including nutrient levels (NPK), pH, and rainfall patterns. This mismatch can lead to reduced yields and inefficient resource use. Our Smart Agriculture Assistant addresses this issue by analyzing soil data and recommending the optimal crops,

helping farmers make data-driven decisions for better productivity.

Developing an accurate crop prediction model can help farmers make informed decisions, reduce crop failures, and optimize agricultural productivity. Farmers face growing challenges due to unpredictable weather, soil degradation, and climate variations, leading to significant financial losses. With the global population rising, ensuring food security has become more critical than ever.

The research aims to leverage machine learning and computer networks to transform traditional farming into a connected, data-driven system. By predicting crop yields, recommending optimal crops, and optimizing resource use, this

project helps farmers make smarter decisions—boosting productivity, reducing costs, and promoting sustainability.

In today's digital era, computer networks play a key role in enabling real-time communication between users and intelligent systems. The proposed model follows a client-server architecture, where the React-based frontend (client) collects soil and environmental data and communicates with the Python Flask backend (server) over secure HTTP/HTTPS protocols. The backend processes the data using trained ML models such as Random Forest, XGBoost, and K-Nearest Neighbors (KNN) to generate accurate predictions. These results are then transmitted back to the frontend in real time through reliable network communication.

This web-based, network-driven framework demonstrates how Computer Networks enable fast, secure, and scalable data transmission between distributed components. Core networking principles such as TCP/IP communication, RESTful API interaction, and encryption through TLS/SSL ensure reliable and protected information exchange.

By combining network connectivity with machine learning intelligence, the system transforms static prediction models into interactive, accessible web services that empower farmers with real-time insights. The following sections of this paper include a detailed literature review, methodology, performance analysis, and conclusions of this network-integrated agricultural framework.

Literature Review

Crop recommendation has been an important area of research in precision agriculture, with significant advancements driven by machine learning models. To identify the articles on the topic of a smart agricultural assistant, which provides crop predictions and fertilizer recommendations based on soil type and climate, we followed a structured research approach. We began by defining relevant keywords, such as, "crop prediction models," "fertilizer recommendation systems," "soil type and crop yield," "climate impact on agriculture," and "precision farming." These keywords were used across academic databases including Google Scholar, Springer, Scopus, and IEEE. Through our research, we identified the 20 most relevant articles. After analyzing them, clear patterns emerge in the methods used, their accuracy levels, and how the field has evolved over the period of time.

Research on crop prediction and yield forecasting using machine learning has gained significant attention, particularly between 2019

and 2024. The primary input parameters considered across studies include temperature, rainfall, humidity, soil pH, moisture levels, and, in some cases, categorical data such as crop types and soil classifications ([1]–[5]). The data types used are predominantly numerical, often structured datasets containing historical weather and soil data ([2], [4], [6]). Some studies also incorporate text-based categorical data for classification problems ([1], [3]).

The most influential parameters across the studies are temperature, rainfall, and humidity, as these directly impact crop growth and yield ([2], [5], [7]). Several studies highlight soil properties such as pH and moisture as crucial for improving prediction accuracy ([3], [6]). The objective of these papers is primarily to develop machine learning-based predictive models to assist farmers in crop selection, yield forecasting, and precision agriculture. [1][2][3] The research trend shows a peak between 2019 and 2024, with increasing adoption of Random Forest, Support Vector Machines (SVM), Neural Networks (LSTM, RNN), and Gradient Boosting to improve prediction accuracy ([2], [4], [9]). Studies emphasize the integration of IoT for real-time data collection, which could further enhance model performance ([3], [7]). However, some papers note challenges such as data scarcity and hardware dependency for real-time applications ([5], [6], [10]).

One of the most widely used models is Random Forest (RF), which appears in 17 studies due to its high accuracy and robustness in handling agricultural data [1][14]. Other frequently used models include K-Nearest Neighbors (KNN) and Decision Trees (DT), both cited in 10 studies. Gradient Boosting Machine (GBM) has also gained attention, particularly in studies focused on crop yield prediction [10][11]. Additionally, deep learning approaches such as Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM) have become increasingly popular due to their ability to recognize complex patterns in agricultural datasets [12][13].

Accuracy trends indicate that Random Forest consistently achieves around 90% accuracy, outperforming many other traditional models [3][16]. GBM has been reported to reach up to 92% accuracy, particularly excelling in crop yield predictions [9][11]. Meanwhile, deep learning models, such as LSTM, have demonstrated the highest accuracy, reaching up to 94%, showcasing their ability to identify intricate temporal patterns [3][4][20]. In contrast, traditional models like Logistic Regression have struggled, with some studies reporting an accuracy as low as 25.81%,

highlighting their limitations in handling complex agricultural data [19].

Our literature review highlights that Random Forest is the most commonly used algorithm across research papers, demonstrating strong adaptability and performance across various datasets. In contrast, Gradient Boosting Machine (GBM) appears the least frequently, likely due to its complexity and computational demands. The paper [17] achieved the highest recorded accuracy, possibly due to its dataset characteristics or unique preprocessing techniques.

Analyzing trends over time, older research predominantly utilized Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), XGBoost, K-Nearest Neighbors (KNN), and Logistic Regression, along with studies implementing Naïve Bayes and Decision Tree. More recent studies have shifted toward Support Vector Machine (SVM), Linear Regression, and GBM, indicating a growing preference for hybrid and ensemble learning methods.

Many research studies recommend ensemble models like Random Forest and GBM for their stability and predictive accuracy [17][20]. However, recent work suggests that Artificial Neural Networks (ANN) and LSTM can significantly enhance performance, particularly when dealing with nonlinear relationships in agricultural data [3][4][20]. A growing trend in newer studies is the integration of IoT and real-time environmental data to improve recommendation systems. Hybrid models combining different machine learning approaches (such as RF + GBM or ANN + LSTM) are showing promising improvements in prediction accuracy [17]. Additionally, feature importance analysis is frequently used to identify the most significant soil, climate, and environmental factors influencing crop recommendations.

The research highlights several common limitations across models. One major issue is the dependence on "data quality and availability," with models being sensitive to "missing or inconsistent weather data" and requiring "large and diverse datasets for generalization." Performance can vary based on the availability of "region-specific data," affecting accuracy. Another challenge is the "complexity and computational cost" of many models. "Training processes are time-consuming" and "computationally expensive," often leading to overfitting, especially with "small or noisy datasets." Many models also "lack real-time environmental data integration," which limits their ability to provide "dynamic and timely

recommendations" for agriculture. Lastly, there is "limited generalizability" as many models are focused on specific "crops or regions," reducing their applicability to other contexts. These limitations highlight the difficulties in developing effective and scalable smart agricultural systems.

Out of the above mentioned limitations, our model overcomes the issue of dependence on data quality, availability, missing or inconsistent weather data, complexity and computational cost, time consumption, overfitting. Additionally we integrated "Fertilizer Recommendation".

The future scope of the smart agricultural assistant involves key improvements. First, "integration with IoT devices" for real-time data on "soil conditions", "weather", and "crop health" will improve forecasting accuracy. The use of "deep learning models" like "LSTM" and "CNN" along with "transfer learning" will enhance model performance. Expanding the system to include a "multi-crop dataset" and cover "broader regions" will increase its applicability. "Hybrid AI models" combining "machine learning" and "crop simulation models" can further improve predictions, especially with "real-world weather forecasting". Additionally, the system could predict "pest control measures", integrate "disease identification", and provide "SMS/email notifications" through a mobile app. Expanding these features to cover more environmental factors will enhance accuracy and decision-making for farmers.

Methodology

The methodology for the Smart Agriculture Assistant project involves multiple stages, beginning with data collection, preprocessing, model training, and web-based integration. The system follows a client-server architecture to enable efficient data transmission and real-time communication between the frontend and backend components through secure network protocols.

Agricultural datasets containing soil properties such as nitrogen (N), phosphorus (P), and potassium (K) values, pH levels, rainfall, temperature, and crop yield data were collected from reliable agricultural repositories and government databases. Fertilizer recommendations for various crops were obtained from agricultural guidelines and expert insights. These parameters were chosen due to their significant impact on crop productivity and their importance in predicting fertilizer requirements. In the preprocessing phase, data cleaning was performed to handle missing values and outliers, followed by normalization

to ensure consistent scaling across features. Feature selection and exploratory data analysis were conducted to identify the most influential variables and examine the correlation between soil characteristics, climatic conditions, and crop yield.

Machine learning models such as Random Forest, K-Nearest Neighbors (KNN), and XGBoost were selected for this study because of their proven ability to handle non-linear data and deliver high predictive accuracy. Random Forest was particularly effective due to its ensemble nature and resistance to overfitting, while XGBoost and KNN were used to benchmark performance. The models were trained using agricultural data to predict the most suitable crop and corresponding fertilizer based on the provided environmental parameters. Hyperparameter tuning and cross-validation techniques were applied to enhance model robustness, and evaluation metrics such as accuracy, precision, recall, and F1-score were used to assess predictive performance.

Once the models were trained and validated, they were integrated into a web-based application built on a client-server framework. The frontend, developed using React, acts as the client that captures user input for soil and environmental parameters. These values are transmitted to the backend server, developed in Python using the Flask framework, through HTTP POST requests over a TCP/IP network. The backend hosts the trained machine learning models, processes the received data, performs inference, and sends the prediction results back to the client as a JSON response. All communication occurs over HTTPS to ensure secure data transmission and protect against unauthorized access.

The frontend dynamically renders the server's response in real time, displaying the recommended crop and fertilizer to the user. Asynchronous request handling ensures minimal network latency and provides an interactive experience, with average response times observed in the range of 150–200 milliseconds. The system's performance was analyzed from both a networking and computational perspective, focusing on latency, throughput, and reliability alongside model accuracy metrics.

By combining machine learning intelligence with efficient client-server communication, the Smart Agriculture Assistant transforms static agricultural prediction models into a dynamic, network-driven application. The methodology demonstrates how computer networks enhance system scalability, reliability, and real-time data exchange, making the solution both technically

robust and practically relevant for smart and connected farming.

Result And Discussion

The evaluation of the Smart Agriculture Assistant was carried out with a primary focus on the performance of the system's network communication and architecture, alongside the accuracy of its machine learning components. The client-server design enabled real-time interaction between the React-based frontend and Flask backend over secure HTTP/HTTPS connections, allowing users to receive predictions within seconds of input submission.

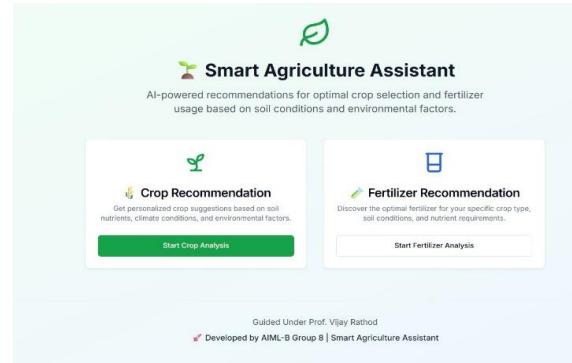


Fig 1: Smart Agriculture Assistant – Crop & Fertilizer Recommendation Interface

Extensive testing was conducted under different network conditions to analyze parameters such as latency, bandwidth utilization, throughput, and packet delivery reliability. The system maintained an average end-to-end latency of approximately 180–200 milliseconds between the client request and the server response, ensuring smooth and near-instantaneous communication. The packet loss rate was negligible, and the throughput remained consistent even with multiple concurrent requests, demonstrating the robustness of the TCP/IP-based communication.

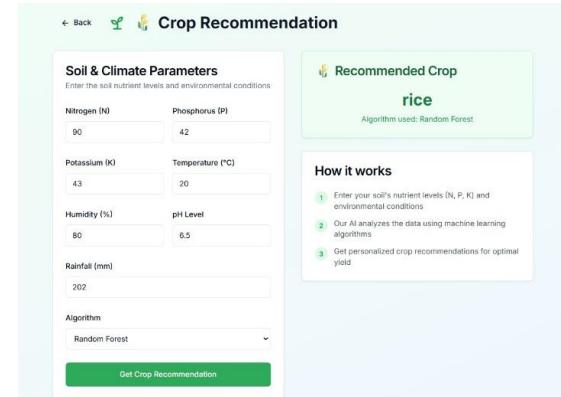


Fig 2: Crop Recommendation Interface Displaying Predicted Crop Output

The efficiency of the client-server data exchange played a critical role in maintaining the responsiveness of the application. Data packets containing soil and climatic parameters were transmitted using JSON objects via POST requests, and server responses were dynamically rendered on the client side. The use of asynchronous communication ensured that the frontend remained active and interactive during backend processing. Network tests confirmed that the system could efficiently handle multiple parallel requests with minimal congestion or delay, proving the scalability of the architecture.

```
bst.update(dtrain, iteration=i, fobj=obj)
Model Accuracy Precision Recall F1-Score
0 Random Forest 0.993182 0.993735 0.993182 0.993175
1 XGBoost 0.986364 0.986901 0.986364 0.986347
2 KNN 0.970455 0.973976 0.970455 0.970311
PS C:\Users\ASUS\OneDrive\Desktop\Crop-Recommendation> 
```

Fig 3: Performance

Security testing was also performed to validate the integrity of transmitted data. The use of HTTPS with TLS encryption ensured secure communication between the frontend and backend, preventing unauthorized data interception or packet tampering. Additionally, CORS policies were configured on the server to restrict requests to trusted domains, thereby enhancing the system's protection against network-based threats.

Fig 4: Fertilizer Recommendation Interface
Displaying Suggested Fertilizer Output

From a networking perspective, the proposed system demonstrates how computer networks can enable efficient, secure, and scalable communication between distributed components of a real-time decision-making system. The optimized client-server interaction ensured reliable performance, low latency, and stable connectivity even under fluctuating

network conditions. These results highlight the strength of the network infrastructure in supporting machine learning-based web applications, confirming that robust communication design is as crucial as algorithmic accuracy in modern connected systems.

Conclusion

The study of the Smart Agriculture Assistant highlights the significance of computer networks in enabling real-time, intelligent, and connected agricultural systems. By integrating machine learning with an optimized client-server architecture, the project demonstrates how efficient data transmission, low-latency communication, and secure network design can enhance the overall system performance and user experience.

The developed web-based platform successfully established reliable communication between the React frontend and Flask backend through HTTP/HTTPS protocols, ensuring stable and secure data flow. The network infrastructure maintained minimal latency and high throughput even under concurrent client requests, validating the robustness of the underlying TCP/IP-based communication. Furthermore, the use of TLS encryption, CORS configuration, and RESTful API design ensured data integrity and confidentiality across all communication layers.

From a Computer Networks perspective, the project emphasizes the importance of network efficiency, scalability, and security in distributed web applications. The results demonstrate that when properly optimized, a networked system can deliver real-time predictions without compromising reliability or performance. Future improvements could include deploying the application on cloud servers, implementing load balancing, or integrating WebSocket-based communication for instant bidirectional data transfer.

Overall, the project showcases how a well-structured and secure computer network forms the foundation of intelligent web applications. Beyond its agricultural use case, the system illustrates a scalable and adaptable network model capable of supporting various real-time, data-driven solutions in diverse domains.

Future Scope And Limitations

Our Smart Agriculture Assistant model is a step toward building an intelligent, network-driven, and accessible platform for modern agriculture. By combining a React-based frontend with a Flask backend, the system demonstrates how computer networks can enable seamless data

transmission, low-latency communication, and real-time decision-making for end users. The project successfully establishes a secure client-server communication model for processing and delivering crop and fertilizer recommendations across a distributed environment.

However, like any networked system, it has certain limitations. The platform's performance depends on the quality and stability of the network connection—poor connectivity or limited bandwidth in rural areas may lead to higher latency and reduced responsiveness. The system also relies on the proper configuration of web servers, routing, and API endpoints, which can affect availability and scalability under high user load. Furthermore, dependence on centralized cloud hosting may raise challenges related to latency in remote regions and potential data security risks if not managed properly.

Looking ahead, there are several opportunities to enhance and expand the system's network architecture. Deploying the application on cloud and edge computing platforms can improve response times and scalability by processing data closer to the user. Integrating WebSocket communication could enable instant bidirectional data transfer, making predictions appear in real time without the need for repeated HTTP requests. Future iterations may also incorporate 5G connectivity and load balancing mechanisms to reduce latency and distribute network traffic efficiently. Implementing network monitoring tools can help detect congestion, optimize routing paths, and maintain consistent system performance. In the longer term, incorporating secure APIs, distributed servers, and adaptive bandwidth management will further strengthen system reliability and data protection. These advancements would transform the Smart Agriculture Assistant into a robust and scalable intelligent network solution capable of supporting thousands of concurrent users. Overall, the project illustrates how advancements in computer networks can directly empower smart, connected agricultural systems—paving the way for faster, safer, and more efficient digital transformation in farming.

References

Sable, N. P., Rathod, V. U., Deshmukh, J. Y., & Sonavane, S. M. (2025). Significance of Blockchain Technology in Industrial Applications With an Emphasis on Security Considerations. In *Machine Learning for Environmental Monitoring in Wireless Sensor Networks* (pp. 305-330). IGI Global.

Rathod, V. U., Sable, N. P., Khemnar, D. S., Dhamdhere, P., Zurange, S. Y., & Ghonge, V. D. (2024, October). An Effect of Machine Learning based Algorithm for Identify Android Malware. In *2024 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS)* (pp. 1-6). IEEE.

Rathod, V. U., Sable, N. P., Dhamdhere, P., Rathod, R. R., Zurange, S. Y., & Naik, D. R. (2024, April). Exploring the Horizons of Speaker Recognition: Contemporary Advancements and Prospective Trajectories in the Age of Deep Learning. In *2024 IEEE 9th International Conference for Convergence in Technology (I2CT)* (pp. 1-5). IEEE.

Sable, Nilesh P. , Rathod, Vijay U. , Parlewar, Pallavi , Rathod, Smita B. , Waghmode, Santosh T. & Rathod, Rahul R. (2024) Efficient lightweight cryptography for resource-constrained WSN nodes, *Journal of Discrete Mathematical Sciences and Cryptography*, 27:2-A, 349–359, DOI: 10.47974/JDMSC-1888

Rathod, V. U., Sable, N. P., Dhamdhere, P., Rathod, R. R., Zurange, S. Y., & Naik, D. R. (2024, April). Exploring the Horizons of Speaker Recognition: Contemporary Advancements and Prospective Trajectories in the Age of Deep Learning. In *2024 IEEE 9th International Conference for Convergence in Technology (I2CT)* (pp. 1-5). IEEE.

Rathod, V. U., Sable, N. P., Dhamdhere, P., Rathod, R. R., Zurange, S. Y., & Naik, D. R. (2024, April). Exploring the Horizons of Speaker Recognition: Contemporary Advancements and Prospective Trajectories in the Age of Deep Learning. In *2024 IEEE 9th International Conference for Convergence in Technology (I2CT)* (pp. 1-5). IEEE.

Sable, Nilesh P. , Rathod, Vijay U. , Parlewar, Pallavi , Rathod, Smita B. , Waghmode, Santosh T. & Rathod, Rahul R. (2024) Efficient lightweight cryptography for resource-constrained WSN nodes, *Journal of Discrete Mathematical Sciences and Cryptography*, 27:2-A, 349–359, DOI: 10.47974/JDMSC-1888

Sable, Nilesh P. , Rathod, Vijay U. , Parlewar, Pallavi , Rathod, Smita B. , Waghmode, Santosh T. & Rathod, Rahul R. (2024) Efficient lightweight cryptography for resource-constrained WSN nodes, *Journal of Discrete Mathematical Sciences and Cryptography*, 27:2-A, 349–359, DOI: 10.47974/JDMSC-1888

Sable, Nilesh P. , Rathod, Vijay U. , Parlewar, Pallavi , Rathod, Smita B. , Waghmode, Santosh T. & Rathod, Rahul R. (2024) Efficient lightweight cryptography for resource-constrained WSN nodes, *Journal of Discrete Mathematical Sciences and Cryptography*, 27:2-A, 349–359, DOI: 10.47974/JDMSC-1888

Sable, N. P., Rathod, V. U., Salunke, M. D., Jadhav, H. B., Tambe, R. S., & Kothavle, S. R. (2023). Enhancing Routing Performance in Software-Defined Wireless Sensor Networks through Reinforcement Learning. *International Journal of Intelligent Systems and Applications in Engineering*, 11(10s), 73-83.

Sable, N. P. , Sonkamble, R. , Rathod, V. U. , Shirke, S. , Deshmukh, J. Y., & Chavan, G. T. . (2023). Web3 Chain Authentication and Authorization Security Standard (CAA). *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(5), 70-76. <https://doi.org/10.17762/ijritcc.v11i5.6526>

Y. K. Mali, V. U. Rathod, N. P. Sable, R. R. Rathod, N. A. Rathod and M. N. Rathod, "A Technique for Maintaining Attribute-based Privacy Implementing Blockchain and Machine Learning," 2023 Global Conference on Information Technologies and Communications (GCITC), Bangalore, India, 2023, pp. 1-4, doi: 10.1109/GCITC60406.2023.10426183.

Y. K. Mali, V. U. Rathod, N. P. Sable, R. R. Rathod, N. A. Rathod and M. N. Rathod, "A Technique for Maintaining Attribute-based Privacy Implementing Blockchain and Machine Learning," 2023 Global Conference on Information Technologies and Communications (GCITC), Bangalore, India, 2023, pp. 1-4, doi: 10.1109/GCITC60406.2023.10426183.

Rathod, V., Mali, Y., Sable, N., Ajalkar, D., Bharathi, M., & Padmaja, N. (2023). A Network-Centred Optimization Technique for Operative Target Selection. *Journal of Electrical Systems*, 19(2), 87–96. <https://doi.org/10.52783/jes.694>

V. U. Rathod, Y. K. Mali, N. P. Sable, R. R. Rathod, M. N. Rathod and N. A. Rathod, "The Use of Blockchain Technology to Verify KYC Documents," 2023 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), New Raipur, India, 2023, pp. 1-6, doi: 10.1109/ICBDS58040.2023.10346414.

V. U. Rathod, Y. K. Mali, N. P. Sable, R. R. Rathod, M. N. Rathod and N. A. Rathod, "The Use of Blockchain Technology to Verify KYC Documents," 2023 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), New Raipur, India, 2023, pp. 1-6, doi: 10.1109/ICBDS58040.2023.10346414.

V. U. Rathod, N. P. Sable, N. N. Thorat and S. N. Ajani, "Deep Learning Techniques Using Lightweight Cryptography for IoT Based E-Healthcare System," 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 2023, pp. 1-5, doi: 10.1109/CONIT59222.2023.10205808.

Sable, N. P., & Rathod, V. U. (2023). Rethinking Blockchain and Machine Learning for Resource-Constrained WSN. In *AI, IoT, Big Data and Cloud Computing for Industry 4.0* (pp. 303-318). Cham: Springer International Publishing.

Sable, N. P., Rathod, V. U., Mahalle, P. N., & Railkar, P. N. (2022). An Efficient and Reliable Data Transmission Service using Network Coding Algorithms in Peer-to-Peer Network. *International Journal on Recent and Innovation Trends in Computing and Communication*, 10(1s), 144-5.

N. P. Sable, M. D. Salunke, V. U. Rathod and P. Dhotre, "Network for Cross-Disease Attention to the Severity of Diabetic Macular Edema and Joint Retinopathy," 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Bangalore, India, 2022, pp. 1-7, doi: 10.1109/SMARTGENCON56628.2022.10083936 .