
International Journal on Advanced Computer Theory and Engineering

© 2025 The Authors. Published by MRI INDIA.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Archives available at journals.mriindia.com

International Journal on Advanced Computer Theory and

Engineering

ISSN: 2319-2526
Volume 14 Issue 01, 2025

Generative Ai Coding Tech - An Advance Pathway

Anwarul Siddiqui 1, Dipti Bagde2, Insherah Ahewer3, Saniya Ali4, Shifa Qureshi5, Nasreen
Ansari 6, Varsha Singh 7

1-7Department Of Computer Science and Engineering and Anjuman College of Engineering and Technology
1ausiddiqui@anjumanengg.edu.in, 2bagdedipti45@gmail.com, 3insherahahewer@gmail.com,
4saniyali274@gmail.com, 5shifaque3k@gmail.com,
6nasreenparweenansari@gmail.com, 7Varshasingh876733@gmail.com

Peer Review Information

Submission: 07 Feb 2025
Revision: 16 Mar 2025
Acceptance: 18 April 2025

Keywords

Generative AI
OpenAI Codex
Search Techniques
AI Code Generation

Abstract

The evolution of generative AI, driven by advancements in large
language models (LLMs) and deep learning, has revolutionized the field
of code generation, offering transformative solutions for software
development. This paper explores state-of- the-art frameworks like
StepCoder and AI Programmer, which leverage reinforcement learning
(RL) and genetic algorithms (GAs), respectively, to address challenges
in generating complex code sequences and optimizing program
functionality. StepCoder introduces a curriculum-based approach to
break down lengthy code tasks and fine-grained optimization
techniques to enhance code quality, while AI Programmer employs
constrained programming languages and genome-based techniques to
autonomously generate full software programs. Additionally, this
study examines the integration of generative AI into competitive
programming tasks and its ability to predict program functions by
fusing neural network predictions with search algorithms. Generative
AI tools streamline coding processes by automating repetitive tasks,
modernizing legacy systems, and translating code across languages.
These innovations not only enhance productivity but also democratize
coding by making it accessible to developers of all skill levels. The
paper further discusses the implications of generative AI in computer
science education and professional programming, emphasizing the
need for actionable strategies to harness its benefits while addressing
ethical concerns and technical limitations. By analyzing experimental
results and real-world applications, this research highlights how
generative AI is reshaping software engineering, fostering
collaboration between human creativity and AI-driven automation, and
paving the way for more efficient and innovative coding practices.

INTRODUCTION
Since the invention of computers, developing
software programs efficiently and correctly has
been a core challenge in the field of software
engineering. Over the years, numerous
breakthroughs have addressed this challenge,

including advancements in type systems,
memory management, and programming
languages. Simultaneously, rapid hardware
innovations—such as multi-core CPUs, GPUs, and
application-specific integrated circuits (ASICs)—
have expanded computational possibilities.

https://journals.mriindia.com/
mailto:ausiddiqui@anjumanengg.edu.in
mailto:bagdedipti45@gmail.com
mailto:insherahahewer@gmail.com
mailto:saniyali274@gmail.com
mailto:shifaque3k@gmail.com
mailto:nasreenparweenansari@gmail.com
mailto:Varshasingh876733@gmail.com

Generative Ai Coding Tech - An Advance Pathway

204

However, these advancements have also
increased the complexity of writing highly
efficient code. To bridge this gap, generative
artificial intelligence (AI) has emerged as a
transformative approach, automating code
generation and optimization while reducing the
cognitive load on developers. Generative AI tools

such as OpenAI Codex, GitHub Copilot, and
Amazon CodeWhisperer now enable developers
to generate precise code solutions from natural
language descriptions. These tools enhance
productivity by automating routine tasks like
documentation, testing, and debugging.
Frameworks like StepCoder and AI Programmer
further push the boundaries by leveraging
reinforcement learning and genetic algorithms to
autonomously create software programs with
minimal human input. Despite these
advancements, concerns persist about over-
reliance on AI tools—particularly among
students—and their impact on foundational
coding skills.
This paper explores the transformative potential
of generative AI in software development,
discussing its applications across the software
development lifecycle (SDLC), implications for
education and professional practices, and
strategies to address emerging challenges

Tools And Technologies
"In our previous work [Gen AI], we explored the
broader landscape of generative AI in coding,
mentioning tools such as OpenAI Codex, Amazon
CodeWhisperer, and ChatGPT. While these tools
share the goal of automating code generation,
their underlying architectures, capabilities, and
use cases differ significantly."
"This paper builds upon our earlier
investigations by focusing specifically on the
application of ChatGPT, a large language model
from OpenAI, for automated code generation. We

delve into the specific techniques used to interact
with the ChatGPT API, the challenges
encountered, and the results achieved."

Chatgpt Vs. Copilot
Christopher Bull, Ahmed Kharrufa et al. ChatGPT
excels at understanding the world, allowing you
to connect your work to a broader context which
is a significant advantage over Copilot. ChatGPT
can be used to tackle work-related problems and
translate them into different scenarios, providing
a unique perspective. While Copilot and ChatGPT
serve different purposes, the members have
shared how to utilize each tool differently.
Copilot is great for creating simple functions and
suggesting alternative approaches, but it lacks
the ability to provide feedback, maintain context,
or access historical conversations. Professionals
and students can benefit from using GAI tools
like ChatGPT to enhance their coding skills and
understand the impact of AI on data analysis.
Although GAI tools can assist with labs and
refactoring, experts still rely on human judgment
to make critical decisions. Organizations are
increasingly using GAI tools to evaluate code
quality, but it's essential to have quality
assurance processes in place to prevent the
implementation of poor suggestions.
Christopher Bull, Ahmed Kharrufa et al. ChatGPT
excels at understanding the world, allowing you
to connect your work to a broader context which
is a significant advantage over Copilot. ChatGPT
can be used to tackle work-related problems and
translate them into different scenarios, providing
a unique perspective. While Copilot and ChatGPT
serve different purposes, the members have
shared how to utilize each tool differently.
Copilot is great for creating simple functions and
suggesting alternative approaches, but it lacks
the ability to provide feedback, maintain context,
or access historical conversations. Professionals
and students can benefit from using GAI tools
like ChatGPT to enhance their coding skills and
understand the impact of AI on data analysis.
Although GAI tools can assist with labs and
refactoring, experts still rely on human judgment
to make critical decisions. Organizations are
increasingly using GAI tools to evaluate code
quality, but it's essential to have quality
assurance processes in place to prevent the
implementation of poor suggestions.

Scope of Study: Chatgpt
A. "While our previous work broadly surveyed
the AI- assisted coding landscape, this paper
focuses on ChatGPT to enable a deeper
investigation into prompt engineering. Effective
code generation with ChatGPT hinges on crafting
precise and nuanced natural language prompts.
By concentrating on ChatGPT, we can explore

International Journal on Advanced Computer Theory and Engineering

205

specific prompt design strategies, analyze their
impact on code quality, and provide practical
guidelines for developers seeking to maximize
the tool's potential. This level of detail would be
impractical when considering multiple,
disparate AI models."
B.” Unlike other code generation tools that
operate in a more 'one-shot' fashion, ChatGPT
offers the ability to engage in conversational
code refinement. Developers can provide
feedback on the generated code, ask for
modifications, and iteratively improve the code's
quality and functionality. this paper focuses on
ChatGPT to explore this unique conversational
paradigm and its implications for human-AI
collaboration in software development. We
investigate the types of feedback that are most
effective, the challenges of maintaining context
across multiple turns of conversation, and the
potential for ChatGPT to act as a collaborative
coding partner."
C. "ChatGPT, built on the GPT architecture,
possesses specific strengths and limitations in
terms of code generation, reasoning, and
understanding of programming concepts.
Focusing on ChatGPT allows us to conduct a
more rigorous analysis of these capabilities,
identify its failure modes, and explore
techniques for mitigating its weaknesses. This
in-depth technical evaluation is essential for
understanding the practical applicability of
ChatGPT and guiding future research in AI-
assisted coding."

Approach To Automated Code Generation
In this research, our approach to code generation
moves beyond the broad application of "AI" by
specifically utilizing ChatGPT through the OpenAI
API. This choice allows us to leverage the
advanced natural language processing
capabilities of ChatGPT to translate high-level
descriptions into functional code. By specifying
our use of the OpenAI API, we ensure clarity
regarding the methods employed in our research,
promoting transparency and replicability.
To further ensure reproducibility and provide a
comprehensive understanding of the model's
capabilities, we explicitly state the version of
ChatGPT used—gpt-3.5-turbo. The selection of
this model reflects a balance between
computational efficiency and generation quality
for code synthesis. Furthermore, our
methodology details the precise API
configurations used, including the
/v1/chat/completions endpoint for
conversational interactions and adjustable
parameters like temperature (set to 0.2 for
promoting more deterministic code outputs) and
max_tokens (dynamically adjusted based on the
complexity of the code to be generated). The

efficacy of ChatGPT in code generation is also
significantly influenced by the design of the
prompts. Therefore, we emphasize the
importance of prompt engineering, providing
concrete examples of the prompts employed. As a
comparative point, while tools like Amazon
CodeWhisperer offer AI-driven code suggestions,
our approach emphasizes the nuanced
interaction with ChatGPT's API for controlled
code generation, allowing for a more tailored and
refined outcome.

METHDOLOGIES

I. Our methodology for developing this AI-
powered code generator was structured around
a comprehensive process, beginning with a
thorough needs assessment to identify
stakeholder requirements and define clear
objectives for the system, prioritizing efficient
code generation, accuracy, and security. This
phase informed the subsequent system design
and architecture, which adopted a
microservices-based approach for scalability
and a user-centric interface for ease of use. The
core of the system integrates ChatGPT, accessed
through the OpenAI API, with a carefully
designed prompt engineering strategy to guide
code generation and an embedded compiler
(drawing from principles in [Rajwal &
Chakraborty, 2023]) to validate the generated
code for correctness.

II. The development process followed an
iterative approach, inspired by Agile principles,
to manage the complexities of combining AI and
compiler technologies. Each iteration involved
requirements gathering, analysis and design,
implementation, rigorous testing, deployment,
and ongoing maintenance. Quality assurance
was a central focus, incorporating test-driven
development, comprehensive integration and
system testing, and user acceptance testing to
ensure that the system met both technical
specifications and user expectations.

III. Finally, the system was designed for
scalable deployment, employing a phased
rollout and providing comprehensive user
training to facilitate effective adoption. A
continuous feedback loop was established to
collect user input and drive ongoing
improvements to the system, ensuring that it
remains adaptable to evolving needs and
delivers a robust and efficient AI- powered
code generation experience.

OPPORTUNITIES
First, the paper highlights the broad potential
for AI to enhance compiler design, particularly
in code optimization and testing. This provides
opportunities to investigate new AI-driven
optimization techniques, adapt existing ones to

Generative Ai Coding Tech - An Advance Pathway

206

modern hardware architectures, and leverage
AI to automate the generation of robust test
programs for compilers. These efforts could be
used to test code generated by ChatGPT which
would ensure that the program being
generated is more reliable and secure.
Second, building on the specific focus of this
project – utilizing ChatGPT for code generation –
several exciting avenues emerge. There's a
significant opportunity to develop AI-powered
tools for optimizing the prompts used with
ChatGPT, as the efficiency and quality of
generated code depend heavily on the prompt's
design. Furthermore, exploring hybrid
approaches, where ChatGPT generates initial
code and AI-driven optimization techniques
refine it further, holds immense potential.
Third, opportunities exist in ensuring the ethical
application of AI-generated code. Avenues to
explore involve the use of AI to mitigate bias,
develop automated documentation, and promote
responsible coding practices. This involves
testing to see if certain programs that are
generated reinforce stereotypes.

RESULTS

I. Code Quality: The GenAI-based code
generator achieves a 95.2% correctness rate,
compared to 88.5% for the rule-based approach.
This means the GenAI- generated code is more
likely to produce the correct output for a given
input or task. GenAI is better programmed to
understand the needs of the program. The GenAI
system scores 92.1% in completeness, versus
85.3% for the traditional method. GenAI is
designed in such a way to make the work
complete.

II. Efficiency: The GenAI-generated code
executes in 2.3 seconds, significantly faster than
the 4.5 seconds required by the rule-based code.
The AI-generated code consumes only 512MB of
memory, half the 1024MB used by the traditional
method. AI Programmer saves time because of
the optimization techniques used in the deep
learning model. Unknown Users (Unregistered
Users): They can only view and read publicly
available projects and to engage further, they
must register and log in. Upon registration, they
gain access to interactive features such as project
submission and collaboration.

fig 2. User Registration Process

• Readability: This metric measures the
complexity of code; lower values are better.
The GenAI code has a Halstead Complexity of
12.5, lower than the 15.8 of the rule-based
code.Higher values are better for this metric.
The GenAI code has a Maintainability Index of
85.2, higher than the 78.5 of the rule-based
code.

• Qualitative Results: 90% of participants found
the AI-generated code readable and
understand abindicating the code is human-
friendly. 85% of participants reported that the
generated code met their requirements,
confirming the code's practical utility.80% of
participants preferred the GenAI-based code
generator over the traditional method,
demonstrating its overall appeal.

CONCLUSION
Generative AI is ushering in a transformative era
for software development, marking a significant
shift from traditional human-driven
programming to AI assisted automation. Tools
like OpenAI Codex,GitHub Copilot, and Amazon
CodeWhisperer have demonstrated the ability to
generate precise code solutions, automate
repetitive tasks, and streamline the software
development lifecycle. Frameworks such as AI
Programmer, which employs genetic algorithms,
and StepCoder, which leverages reinforcement
learning, further highlight the potential of AI to
autonomously generate functional programs
with minimal human intervention. These
advancements not only enhance productivity but
alsoenable developers to tackle more complex
problems by offloading routine tasks to AI
systems.
However, this shift brings challenges that must
be addressed. Concerns about over-reliance on AI
tools, particularly among students and novice
developers, emphasize the need for a balanced
approach that prioritizes foundational coding
skills alongside AI integration. Additionally,
optimizing fitness methods for program
evaluation and crafting programming languages
aligned with machine learning constraints
remain critical areas for future research.
Generative AI also has profound implications for
education and professional development, shifting
the focus from code creation to code evaluation
and problem-solving. By fostering collaboration
between human creativity and AI-driven
automation, generative AI has the potential to
redefine software engineering, paving the way
for faster development cycles, improved software
quality, and entirely new business models.
Ultimately, careful oversight and ethical
considerations will be crucial in ensuring that
these tools serve as a complement to human
expertise rather than a replacement.

International Journal on Advanced Computer Theory and Engineering

207

References
Desai Ankur and Deo Atul. 022
Introducing Amazon CodeWhisperer,the ML-
powered Coding Companion.
https://aws.amazon.com/blogs/machine-
learning/introducing-amazon-codewhisperer-
the- ml-powered-coding-companion/

Mark Chen, Jerry Tworek,Heewoo Jun,et al.
2021. Evaluating Large Language Models
Trained on Code.
https://arxiv.org/abs/2107.03374

James Finnie-Ansley, Paul Denny, Brett A,
Brecker, et al. 2022. The Robots Are Coming:
Exploring the Implications of OpenAI Codex on
Introductory Programming. In Australasian
Computing Education Conference ACM, NY,
NY, USA,
https://dl.acm.org/doi/10.1145/3511861.35118
63

Yujia Li, David Choi, Junyoung Chung, Julian
Schrittwieser,etal. 2022. Competition- level
Code Generation With AlphaCode. Science378,
 6624 (2022), 1092–
1097.https://doi.org/10.1126/science.abq1158.

Alex A. Alemi, Franc ois Chollet, Geoffrey
Irving, Christian Szegedy, and Josef Urban.
DeepMath - deep sequence models for premise
selection. In Proocedings of the 29th Conference
on Advances in Neural Information Processing
Systems (NIPS), 2016.

Rudy R Bunel, Alban Desmaison, Pawan K
Mudigonda, Pushmeet Kohli, and Philip Torr.
Adaptive neural compilation. In Proceedings of
the 29th Conference on Advances in Neural
Information Processing Systems (NIPS), 2016.

Rudy R Bunel, Alban Desmaison, Pawan K
Mudigonda, Pushmeet Kohli, and Philip Torr.
Adaptive neural compilation. In Proceedings of
the 29th Conference on Advances in Neural
Information Processing Systems (NIPS), 2016.

Agakov, F., et al. (2006). Using machine learning
to focus iterative optimization

Almohammed, M. H., et al. (2019). Programs
features clustering to find optimization
sequence using genetic algorithm.

Ashouri, A. H., et al. (2017). Micomp:
Mitigating the compiler phase-ordering
problem using optimization sub-sequences
and machine learning.

Chen, J., et al. (2017). Learning to prioritize
test programs for compiler testing.
International Conference on Software
Engineering, 700–711.

Chen, Y., et al. (2013). Taming compiler
fuzzers. ACM SIGPLAN Notices, 48(6), 197–208.
Cummins, C., et al. (2018). Compiler tuzzers.

https://arxiv.org/abs/2107.03374
https://doi.org/10.1126/science.abq1158

