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Abstract 

For many years, healthcare providers in the United States have relied on 
the ACC/AHA Pooled Cohort Equations (PCE) Risk Calculator as their 
main resource for estimating a person’s likelihood of developing 
atherosclerotic cardiovascular disease, a leading form of heart-related 
illness. Despite being widely used, the calculator occasionally 
overestimates or underestimates risk but doesn't always perform equally 
across different groups. To overcome these challenges, we developed an 
automated ASCVD risk-prediction model tailored to particular patient 
groups, using machine-learning techniques applied to real-world 
electronic medical record data. We then compared its performance with 
the PCE approach. In our study, we reviewed 101,110 electronic medical 
records from patients seen between January 1, 2009, and April 30, 2020. 
The machine-learning models were trained using either cross-sectional 
clinical data alone or a combination of cross-sectional information and 
longitudinal patterns drawn from lab results and vital-sign 
measurements. To understand how each model identified true cases, we 
introduced a cost-focused metric called the “Screened Cases Percentage 
at a given Sensitivity,” which shows how many patients would require 
follow-up testing to detect most ASCVD cases. In every analysis we 
conducted, the machine-learning models outperformed the PCE 
calculator. The strongest results came from a random forest model that 
used both cross-sectional and longitudinal data, achieving an AUC of 
0.902 (95% CI: 0.895–0.910). To identify 90% of ASCVD cases, this 
approach required screening only 43% of patients, compared with 69% 
when relying on the PCE. Overall, combining CS and LT data led to 
accurate predictions and fewer unnecessary screenings. 
 

 
Introduction 
Athero-sclerotic cardiovascular disease (ASCVD) 
continues to be a leading global health factor 
with tremendous medical and economic 
consequences. North America, the Middle East 
and Central Asia have highest cardiovascular 
disease prevalence, but Eastern Europe and 
Central Asia see the highest cardiovascular 

mortality rates [1] globally. A cornerstone to 
ASCVD prevention is early assessment of risk. For 
those found at high risk, awareness of their 
ASCVD score can lead to earlier preventive 
therapy and protect them from unnecessary 
diagnostics [2-4].  

Figure 1. Workflow for building and testing 
ML models. Data is extracted from EMRs and 
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filtered. ML models are built on DataMain, 
compared with each other for performance, and 
compared against the PCE risk score for the 
DataPCE subgroup. Abbreviations: ASCVD, 
atherosclerotic cardiovascular disease; CS, cross-
sectional; EMR, electronic medical record; LT, 
longitudinal; machine-learning models: RF, 
random forest; LR, logistic regression; NN, neural 
networks; NB, naïve Bayes. Improving ASCVD 
risk predictions is becoming more and more 
important in routine clinical practice in order to 
lower the cost of preventive care and lessen 

reliance on costly or invasive testing [5,6]. To 
gauge someone’s likelihood of experiencing a 
major ASCVD event within the next ten years—
such as a non-fatal heart attack, a non-fatal 
stroke, or death caused by coronary heart 
disease or stroke—current clinical guidelines 
primarily depend on the pooled cohort equations 
(PCE) [4,7]. Although there are other scoring 
systems, they are frequently designed to target 
particular populations or cardiovascular 
outcomes [8, 9]. 

 
Figure 1. Workflow for building and testing ML models. Data is extracted from EMRs and filtered. ML models 
are built on DataMain, compared with each other for performance, and compared against the PCE risk score 
for the DataPCE subgroup. Abbreviations: ASCVD, atherosclerotic cardiovascular disease; CS, cross-sectional; 

EMR, electronic medical record; LT, longitudinal; machine-learning models: RF, random forest; LR, logistic 
regression; NN, neural networks; NB, naïve Bayes. 

 
Improving ASCVD risk predictions is becoming 
more and more important in routine clinical 
practice in order to lower the cost of preventive 
care and lessen reliance on costly or invasive 
testing [5,6]. To gauge someone’s likelihood of 
experiencing a major ASCVD event within the 
next ten years—such as a non-fatal heart attack, 
a non-fatal stroke, or death caused by coronary 
heart disease or stroke—current clinical 
guidelines primarily depend on the pooled 
cohort equations (PCE) [4,7]. Although there are 
other scoring systems, they are frequently 
designed to target particular populations or 
cardiovascular outcomes [8, 9]. 
Many prediction models are already being used 
in clinics, but they can sometimes misrepresent 
an individual’s true risk. This happens when 
models underestimate or overestimate risk in 

people with differing medical backgrounds, 
demographics, or socioeconomic circumstances 
[2, 5, 10-12]. When risk is inaccurately 
calculated, patients [2] may receive too much 
treatment, too little treatment, or experience 
delays in care—issues that contribute to ongoing 
clinical inertia. Although modern risk calculators 
are increasingly built into electronic medical 
record (EMR) systems that offer decision 
support, there is still a strong need for tools that 
provide a more complete understanding of both 
long-term and short-term ASCVD risk—
something current PCE methods [2, 5, 8] often 
fail to capture. ML involving mathematics, 
statistics and computer science had become a 
promising tool for predicting medical data [13]. 
It is used in multiple health system decision 
support tools [14-17] today and has been 
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reported to have performance as good as or 
better than human developed risk models for 
cardiology [5,10].  
Machine learning offers a way to make better use 
of the long-term information stored in electronic 
medical records, helping improve how clinicians 
assess a patient’s risk of developing 
atherosclerotic cardiovascular disease. Prior 
research has examined machine learning models 
to identify ASCVD-related events from cross-
sectional clinical variables [10], sometimes with 
the addition of CAC scores [10, 18]. Our study 
aimed to tackle these gaps by developing a 
clinically oriented ASCVD prediction model that 
avoids many of the limitations found in current 
methods. 

 
Materials And Methods 
This study was carried out as a retrospective, 
records-based analysis using longitudinal 

electronic medical record data from living 
patients treated within a regional healthcare 
system in the United States. Data extraction was 
performed using a clinical decision-support 
interface embedded in the EMR, which applied 
structured query language to identify relevant 
records within the St. Elizabeth Healthcare 
System in Kentucky. Patients were eligible if they 
had at least one clinical encounter between 
January 1, 2009, and April 30, 2020, during which 
low-density lipoprotein cholesterol (LDL-C) was 
recorded. All living patients with at least one 
LDL-C measurement were included. Because 
statins reduce LDL-C [4, 19-25] in predictable 
ways, pretreatment LDL-C levels for active statin 
users were estimated by multiplying their most 
recent recorded value by a validated adjustment 
factor of 1.43. 

 
Table 1. Diagnostic Criteria for Comorbidities in the Study Population. 

Diagnosis Diagnostic Criteria Reference 
Atherosclerotic cardiovascular 
disease (ASCVD) 

Having either coronary artery 
disease (CAD), cerebrovascular 
stroke (CVS), or peripheral artery 
disease (PAD) 

 

Atherosclerotic coronary artery 
disease (CAD) 

Active CAD diagnosis or ICD-10: 
I20, I21, I22, I23, I24, or I25 on the 
EMR problem list or having at least 
3 instances of CAD appearing as an 
encounter diagnosis in the last 2 
years or at least 3 CAD claim 
diagnoses in the last 2 years 

[33] 

Premature coronary artery 
disease (Premature CAD) 

CAD occurring before age 55 years 
in males or 60 years in females 

[34] 

Ischemic cerebrovascular stroke 
(CVS) 

Active CVS diagnosis or ICD-10: I63, 
I74, or I75 on the EMR problem list 

[33] 

Peripheral artery disease (PAD) Active PAD diagnosis or ICD-10: 
I63, I74, or I75 on the EMR problem 
list 

[33] 

Diabetes mellitus (DM) Active DM diagnosis on the EMR 
problem list or HbA1c ≥ 6.5% more 
than once or random peripheral 
blood glucose > 200 mg/dl plus 
HbA1c ≥ 6.5% and no gestational 
diabetes type 1 or type 2 

[35] 

Obesity (OB) Active obesity diagnosis on the 
EMR problem list or most recent 
BMI ≥ 30 kg/m2 

[36] 

Essential hypertension (HTN) Active essential HTN diagnosis on 
the EMR problem list 

[37] 

Congestive heart failure (CHF) Active CHF diagnosis on the EMR 
problem list 

[38] 

 
All extracted data were anonymized according to 
HIPAA regulations. De-identified datasets can be 
shared upon reasonable request with 
institutional approval. The study received review 

board authorization, including a waiver of 
informed consent due to its retrospective nature. 
From 289,299 screened encounters, 101,110 
records with complete laboratory and vital sign 
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data formed the primary machine-learning 
dataset (DataMain), while 54,850 records with 
PCE scores comprised DataPCE. The study design 
enabled direct comparison of machine-learning 
models with PCE calculations [7] and assessment 
of the influence of 10-year longitudinal features.  
The diagnostic definitions used to identify 
comorbid conditions are outlined in Table 1. In 
this study, ASCVD includes patients diagnosed 
with coronary artery disease (CAD), 
cerebrovascular stroke (CVS), or peripheral 
artery disease (PAD). Once a patient meets the 
criteria for CAD or CVS, their medical record is 
marked with a corresponding diagnosis date and 
remains classified under that condition for the 

duration of the study. Some patients may be 
diagnosed with more than one ASCVD condition, 
such as both CAD and CVS, and may also have 
additional comorbidities. 
 
Cross-Sectional Features and Longitudinal 
Features 
In developing our machine-learning models, we 
incorporated both cross-sectional (CS) and 
longitudinal (LT) features. The CS feature set, 
consisting of 31 variables, included patient 
demographics, aggregated clinical risk scores, 
family history, assigned clinical care categories, 
laboratory measurements, vital signs, and 
documented comorbid conditions (Table 2a).  

 
Table 2a. Cross-Sectional (CS) Features used in the ML Models. 

Feature Description(s) 
Demographics Age 

Gender 
Age categories: <30, [30,40), [40,50), [50,55), [55,60), [60,65), [65,70), 

[70,75), [75,80), >=80 
Aggregate risk scores ASCVD 10-year risk score (PCE) 

ASCVD 10-year risk score (PCE) categorical, discretized to 3 categories: null 
value, <5, and ≥ 5 

Numerical score for the family history group of the Dutch Lipid Clinic 
Network (DLCN) (0,1) 

Hierarchical Condition Category Risk Score (Risk Score) 
Numeric score for the LDL-C group of the DLCN (0,1,3,5,8) 

Family history (FHX) Family history of any coronary artery disease (FHX-++) 
Family history of premature coronary artery disease (FHX Premature) 

Family history of non-premature coronary artery disease (FHX Non-
premature) 

Clinical care group Current insurance carrier (Carrier) 
Current primary care provider is an employee of the healthcare system 

where the study is conducted or not (SEP Affiliation) 
Have seen endocrinologist in the past or not (Saw Endo) 

Patient has account with the MyChart personal health record or not 
(MyChart) 

Laboratory values Maximum LDL-C (whether EHR-documented or last estimated 
pretreatment) ≥ 190 mg/dL at least twice (LDL-C > 190 x2) 

Maximum LDL-C (whether EHR-documented or last estimated 
pretreatment) ≥ 190 mg/dL at least once (LDL-C > 190) 

The last LDL-C reading before a CAD diagnosis, or the last LDL-C reading in 
absence of CAD LDL (Num Before CAD Avg) 

The last Non-HDL-C reading before a CAD diagnosis, or the last Non-HDL-C 
reading in absence of CAD (Non-HDL-C Num Before CAD Avg) 

The last VLDL-C reading before CAD diagnosis, or the last VLDL-C-reading in 
absence of CAD (VLDL-C-Num-Before-CAD-Avg) 

Maximum Lp(a) (MAX LPA) 
Maximum Lp(a) group (whether MAX LPA < 29 or > 50 or null value) (MAX 

LPA cat) 
Vital signs Last mean arterial blood pressure (MAP) reading before a CAD diagnosis, or 

the last MAP reading in absence of CAD (MAP BEFORE CAD Avg) 
Last systolic arterial blood pressure (SYS) reading before a CAD diagnosis, 

or the last SYS reading in absence of CAD (SYS BP BEFORE CAD Avg) 
Last diastolic arterial blood pressure (DIA) reading before a CAD diagnosis, 

or the last DIA reading in absence of CAD (DIA BP BEFORE CAD Avg) 
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Comorbidities Diabetes (T1 or T2) (Yes or No, Number of months of having diabetes before 
being CAD diagnosis) 

Hypertension (Yes or No, Number of months of having HTN before CAD 
diagnosis) 

Obesity (Yes or No, Number of months of having OB before CAD diagnosis) 
 
To better capture how a patient’s health changed 
over time, we developed an additional set of 63 
longitudinal (LT) features. These variables 
reflected evolving patterns in lipid levels, HbA1c, 
blood pressure, and other routinely measured 
clinical markers. For every patient and each time-
varying parameter, we calculated descriptive 
statistics such as the minimum, maximum, mean, 
overall time span, value range, standard 
deviation, average interval between 
measurements, and coefficient of variation. 

Collectively, these measures enabled the LT 
feature set to represent both actual values and 
individual variability across time. 
For patients without an ASCVD diagnosis, all 
recorded measurements were used to generate 
longitudinal statistics. For those who developed 
ASCVD, only data collected before diagnosis were 
included, ensuring the LT features reflected true 
pre-diagnostic information and avoided future 
data influencing model training. 

 
Table 2b. Longitudinal Features (LT) for Vital Signs* and Laboratory Values. 

Feature Description 
Minimum (MIN) Lowest value of all patient recorded values for a feature 
Maximum (MAX) Highest value of all patient recorded values for a feature 
Average (MEAN) Average value for all recorded values of the feature 
Reading Number 

(COUNT) 
Number of recorded readings for each measure 

Reading-time range 
(TRANGE)‡ 

Time difference, in days, between the first and last recorded values for the 
feature 

Reading-value range 
(VRANGE)§ 

Difference between the smallest and largest recorded value for the feature 

Standard Deviation 
(STDEV) 

Amount of variation between the recorded values for the feature 

Average reading days 
(Avg-Test-Day)|| 

Average time, in days, between consecutive recorded values for the feature 

Coefficient of variation 
(CV)# 

Standard measure of dispersion of a probability distribution or frequency 
distribution 

 
*Vital signs: diastolic BP, systolic BP, mean arterial pressure (MAP). 
  Laboratory values: LDL-C, total cholesterol, 
HDL-C, non-HDL-C, triglycerides, HbA1c. 
‡Reading-time range: to determine if the length 
of the patient’s care (reflected by the history of 
vital and laboratory records) has had any impact 
on the risk for developing an ASCVD. 
§ Reading-value range: might be significant for 
the cases with large reading differences. 
|| Average reading days: to determine if the 
frequency of patient care, as reflected by 
patients’ vital signs (e.g., BP), being checked in a 
professional environment and more frequent 
laboratory tests (e.g., lipid profile, LDL-C) have 
any impact on the risk for developing ASCVD. 
# Coefficient of variation (also known as the 
relative standard deviation): to study whether 
the fluctuation of laboratory values and vital 
sign readings contribute to a patient’s risk for 
developing ASCVD. 

 
ML Models 
To assess each patient’s risk of developing 
ASCVD, we built automated prediction models 
using four different machine-learning 
techniques: logistic regression, naïve Bayes, 
neural networks, and random forest. Each model 
was developed twice—first using only cross-
sectional (CS) clinical features, and again using a 
combined set of CS and longitudinal (LT) features 
(LTC). Using a standard two-by-two contingency 
structure, we assessed model performance 
through multiple evaluation measures, applying 
10-fold cross-validation on two datasets, 
DataMain and DataPCE, to ensure reliable 
comparison. 
 
Screened Cases Percentage @ Sensitivity 
Level 
For a prediction model to be practical, it must 
achieve high sensitivity without requiring 
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excessive patient screening. To address this, we 
introduced the Screened Cases Percentage at a 
given Sensitivity (SCP@Sensitivity), a metric that 
indicates how much of the population must be 

evaluated to reach a chosen sensitivity while 
limiting unnecessary tests. The corresponding 
formula is provided below: 

 
SCP @Sensitivity(S) =  

|Subpopulation of patients who must be screened to achieve the target sensitivity level of S| 
 

|Overall Patient Population| 
 
where |X| is a notation for the cardinality of a set X. 
 
Practically speaking, this quantity also has 
clinical value: it provides a way to calculate the 
resources required for screening a population at 
sensitivity target. Therefore, it supports efforts to 
reduce unnecessary diagnostic tests. In theory, 
the proportion of patients who would need to be 
screened to identify every ASCVD-positive 
case—represented as SCP@Sensitivity(1)—
could drop to as low as 11.56% in the DataPCE 
cohort. This value is for the 6,339 people with 
confirmed ASCVD among the possible 54,850 
patients in the analysis in DataPCE.  
 
Results 
Model Performance presents a comparison of all 
developed models and their AUC results to 
highlight which combinations of methods and 
feature sets performed most effectively. Impact 
of Features used to Build the Models takes a 
closer look at the top-performing model and 
examines which features played the most 
important roles. ML comparison with the PCE 
features and without the PCE features assesses 
model performance with and without PCE 
variables to determine whether the PCE score 
provides meaningful additional value. ML 
comparison with the PCE Calculator summarizes 
statistical comparisons, Screened cases 
percentage at sensitivities 50% and 90% 
[SCP@Sensitivity(0.5) and 

SCP@Sensitivity(0.9)] introduces the 
SCP@Sensitivity metric, and Probability 
Threshold for DataMain Model Performance 
evaluates threshold-based performance of the 
top model. 
 
Model Performance 
Among all models evaluated, the RF-LTC 
approach demonstrated the strongest overall 
performance for ASCVD prediction, achieving an 
AUC of 0.902 (95% CI: 0.895–0.910), clearly 
outperforming RF-CS (AUC 0.82), NN-LTC (AUC 
0.896), LR-LTC (AUC 0.888), and NB-LTC (AUC 
0.817). The AUC values shown in Fig. 2 represent 
an aggregated assessment derived from 
probability estimates corresponding to each 
sensitivity–specificity pair on the ROC curve. 
The neural network model was structured with 
an input layer, a single hidden layer of 150 nodes, 
and an output layer, and was trained using 
backpropagation with a learning rate of 0.01 and 
momentum of 0.9. The random forest model 
employed bootstrap sampling and the Gini 
criterion without restrictions on tree depth. 
Logistic regression was implemented using an L2 
penalty, C = 1.0, and a maximum of 100 iterations. 
The naive Bayes model followed a Gaussian 
framework without predefined priors. All 
algorithms were executed using the Scikit-learn 
library [26]. 

 

 
Figure 2. Area Under Curve (AUC) for DataMain. As a measure for individual model performance for 

predicting ASCVD in the DataMain cohort, RF-LTC produced the best AUC for ASCVD prediction. 

mailto:SCP@Sensitivity(0.9)
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Impact of Features used to build the Models 
To better understand how different variables 
influenced the models, we used Shapley Additive 
Explanations (SHAP) on the DataMain dataset 
(Fig. 3). In the RF-CS model, age stood out as the 
most powerful predictor, followed by existing 
health conditions, overall risk scores, and LDL-C 
levels. In contrast, the LTC model placed greater 
weight on longitudinal information—especially 
trends in blood pressure, lipid levels, and HbA1c. 

Even so, age remained one of the strongest 
contributors in both the RF-LTC and RF-CS 
models, underscoring its well-known importance 
in ASCVD risk. Interestingly, the PCE-derived 
features did not rank among the top drivers of 
prediction. The ASCVD_10_YR_SCORE_score 
appeared eighth in both models, while the 
categorical version of this score ranked even 
lower—tenth in the RF-LTC model and eleventh 
in the RF-CS model. 

 

 
a) RF-LTC b) RF-CS 

Figure 3. Shapley Additive Explanations (SHAP)[39] Diagram. This illustrates the relative importance of 
features for: (a) longitudinal features plus cross-sectional features (LTC), and (b) cross-sectional features 

(CS) only on the RF models, since RF-LTC showed the best performance according to the AUC measure. 
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The blue and red points in each row represent 
data cases having low to high values of the 
specific variable: blue for low and red for high. 
The X-axis represents the SHAP value, which 
quantifies the variable’s impact on the model [i.e., 
tendency to drive the predictions toward an 
event (positive SHAP value, i.e., ASCVD) or non-
event (negative SHAP value, i.e., non-ASCVD)]. 
The top 20 variables contributing most to the 
class separability of the model are shown in the 
figure. Age, comorbid- ities, and aggregate risk 
scores were the most predictive features in the 
RF-CS model, followed by LDL-C features. The BP 
TRANGE measure, lipid TRANGE measure, and 
HbA1c TRANGE measure were the most 
predictive LT features. In both models, age was 
one of the most important features. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.) 
 
ML Comparison with the PCE Features and 
without the PCE Features 
To better understand the impact of PCE-derived 
variables on the models, we re-evaluated all 

models in the DataPCE cohort, running them both 
with and without the PCE scores and their 
categorical forms. What stood out was that the 
NN-LTC model performed exactly the same, 
holding an AUC of 0.896 even after the PCE inputs 
were removed. The RF-LTC model experienced 
only a slight decline in performance, with its AUC 
decreasing to 0.894—just a small drop of 0.006. 
Overall, these results indicate that the core 
longitudinal and cross-sectional features used by 
the models carry most of the predictive power, 
even when the PCE variables are not included. 
 
ML Comparison with the PCE Calculator 
To evaluate performance, we compared our 
automated machine-learning models with the 
PCE 10-year risk score commonly used in clinical 
practice. Although the ML models were 
developed using the DataMain cohort, the 
comparison relied on the DataPCE dataset, as 
PCE scores were available only there.  

 
Figure 4. Area under the curve (AUC) for DataPCE. As a measure of individual model performance for 

predicting ASCVD in the DataPCE group, LR-LTC pro- duced the best AUC. 
 
The AUC values derived from 10-fold cross-
validation are shown in Fig. 4. When predicting 
ASCVD risk, all ML methods performed better 
than the conventional PCE calculator (AUC 0.712; 
95 percent CI 0.700–0.730). Among them, the LR-
LTC model showed the strongest performance, 
achieving an AUC of 0.880 (95% CI 0.867–0.894) 
in the DataPCE dataset. 

 
Screened Cases Percentage at Sensitivities 
50% and 90% [SCP@Sensitivity(0.5) and 
SCP@Sensitivity(0.9)] 
In clinical practice, risk-prediction models are 
most useful when they help identify individuals 
who are more likely to have a positive diagnosis 
while limiting the number of people who must 
undergo additional laboratory or confirmatory 
testing. This balance is critical because 
increasing sensitivity—although desirable for 

mailto:SCP@Sensitivity(0.9)
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capturing more true positive cases—also 
increases the proportion of the population 
requiring further diagnostic evaluation. 
Therefore, a model that achieves higher 
sensitivity with fewer individuals needing 
follow-up testing (i.e., lower SCP@Sensitivity) is 
considered more efficient and clinically 
meaningful. At any chosen sensitivity level (S), an 
effective machine-learning model should 
demonstrate a higher positive predictive value 
(PPV) and a reduced SCP@Sensitivity(S). In 
current clinical workflows, PCE thresholds of 5% 
and 20% are frequently used to distinguish low-
risk from high-risk patients [4, 30]. Accordingly, 
we assessed the SCP@Sensitivity of all models at 
sensitivity levels of 0.90—aligned with the 5% 
PCE cutoff—and 0.50—aligned with the PCE 
score of 18.5%. Within the DataPCE cohort, the 
theoretical minimum SCP@Sensitivity(0.90) is 
10.40%. In contrast, the PCE method requires 
screening all individuals with a risk score of 5% 
or higher, which in our dataset accounted for 
68.8% of the population (S7 Table). The NN-LTC 
model demonstrated a substantial improvement, 
identifying the same proportion of true positives 
while requiring screening of only 43.4% of the 
population at a probability threshold of 3.2%. All 
ML models outperformed the PCE method at this 
sensitivity level, consistently reducing the 
proportion of individuals requiring further 
evaluation. 
Similarly, to capture 50% of true positive cases, 
the theoretical minimum SCP@Sensitivity(0.50) 
is 5.78% in the DataPCE cohort. As shown in S8 

Table, the PCE calculator requires screening 
25.6% of the population at a cutoff of 18.6%. In 
comparison, the RF-LTC model achieves the 
same sensitivity by screening only 7.1% of 
individuals at the same probability threshold. 
Again, all ML models showed superior 
performance relative to the PCE score, requiring 
substantially fewer individuals to be screened 
while maintaining equivalent sensitivity. 
 
Probability Threshold for DataMain Model 
Performance 
In clinical settings, decision-making is typically 
binary, with outcomes classified as either 
positive (1) or negative (0). In contrast, machine-
learning models generate continuous risk scores 
ranging between 0 and 1, which must be 
interpreted using a threshold probability (t). A 
predicted score equal to or exceeding t is 
considered a positive prediction, while a score 
below t is interpreted as negative. Given that the 
RF-LTC model demonstrated the highest overall 
AUC values (Fig. 2), we present its performance 
along with corresponding threshold 
probabilities (Table 3) to guide clinicians in 
selecting optimal thresholds based on clinical 
priorities. The AUC values reported represent 
point-level estimates associated with a single 
sensitivity–specificity pairing at the chosen 
threshold. Performance metrics for the other top 
models, NN-LTC and LR-LTC, along with their 
thresholds. All remaining models 
underperformed relative to these three.

 
 
Table 5. RF-LTC Model Performance on DataMain for Various Probability Threshold Values* 𝛙 

Cut-off 
Probability 

AUC NPV Specificity F0 PPV Sensitivity F1 SCP@Sensitivity 

0.05 0.673 0.982 0.378 0.546 0.247 0.967 0.393 68.2% 
0.1 0.759 0.975 0.590 0.735 0.323 0.928 0.479 50.0% 

0.15 0.803 0.968 0.718 0.824 0.398 0.888 0.550 38.8% 
0.2 0.820 0.960 0.797 0.871 0.466 0.842 0.600 31.4% 

0.25 0.826 0.953 0.853 0.900 0.533 0.799 0.640 26.1% 
0.3 0.824 0.945 0.892 0.918 0.596 0.756 0.666 22.1% 

0.35 0.816 0.938 0.920 0.929 0.651 0.712 0.680 19.0% 
0.4 0.806 0.932 0.941 0.936 0.704 0.672 0.687 16.6% 

0.45 0.793 0.925 0.956 0.940 0.751 0.629 0.685 14.6% 
0.5 0.776 0.917 0.968 0.942 0.795 0.584 0.673 12.8% 

0.55 0.759 0.910 0.977 0.942 0.832 0.541 0.655 11.3% 
0.6 0.740 0.903 0.983 0.941 0.861 0.497 0.630 10.0% 

0.65 0.720 0.895 0.988 0.940 0.892 0.451 0.599 8.8% 
0.7 0.699 0.888 0.992 0.937 0.916 0.406 0.563 7.7% 

0.75 0.676 0.880 0.995 0.934 0934 0.358 0.517 6.7% 
0.8 0.652 0.872 0.997 0.930 0.952 0.307 0.465 5.6% 

0.85 0.626 0.864 0.998 0.926 0.964 0.254 0.402 4.6% 
0.9 0.598 0.855 0.999 0.922 0.975 0.197 0.328 3.5% 

0.95 0.568 0.846 1.000 0.916 0.987 0.136 0.239 2.4% 
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* Various methods may be used to calculate the 
probability threshold, t: i) assigned as 0.5 
(halfway within the 0–1 range); ii) based on 
model performance [select the value from the set 
(0.05, 0.1, 0.15, …, 0.95) that achieves the best 
performance metric (AUC, PPV or sensitivity); or 
iii) based on the SCP, PPV, and sensitivity of the 
model for that threshold value (the higher t, the 
higher the PPV, but the lower the sensitivity and 
SCP of the model). 
𝛙 Color variation indicates low (lightest) to high 
(darkest) AUC. 
 
For the RF-LTC model, the highest AUC (0.826) 
was achieved at a threshold of 0.25. In terms of 
the F1 score, optimal performance (0.687) 
occurred at a threshold of 0.40, with additional 
metrics detailed in Table 3. Clinicians can select 
thresholds according to specific needs; for 
example, a threshold of 0.25 achieves 
approximately 80% sensitivity, while a threshold 
of 0.50 corresponds to 80% positive predictive 
value (PPV). This flexibility enables careful 
balancing between minimizing misclassification 
of high-risk patients as low risk and maximizing 
opportunities for timely interventions and 
potentially life-saving management strategies. 
 
Discussion 
Research exploring machine-learning 
approaches for estimating atherosclerotic 
cardiovascular disease (ASCVD) risk has yielded 
mixed but generally encouraging insights. Early 
studies [10, 18] indicated that ML-based models 
can complement standard cardiac evaluations, 
either by improving interpretation of imaging 
results or [27] by predicting a broad range of 
ASCVD-related outcomes [5,10,18,28-30]. 
Notable work by Motwani et al. [28], van 
Rosendael et al. [30], and Nakanishi et al. [10]—
across cohorts ranging from 8,844 to over 66,000 
participants—used coronary calcium scores and 
imaging data to estimate short- and long-term 
mortality and coronary heart disease risk. Ward 
et al. [18] and colleagues examined five-year 
ASCVD risk using structured clinical information 
from electronic medical records.  
In comparison, our study observed similar mean 
ASCVD risk scores in the DataMain cohort (7.19 ± 
11.313), while the DataPCE cohort showed 
substantially higher averages (13.26 ± 12.47). 
Although mortality could not be assessed 
because deceased individuals were not included, 
we focused on current ASCVD risk by 
incorporating both clinical symptom (CS) data 
and longitudinal trajectory (LT) patterns 
preceding diagnosis [30]. Earlier models paired 
clinical factors with imaging, but many were 
limited by selection bias [30]. Consistent with 

previous findings, our ML models surpassed 
pooled cohort equation (PCE) estimates [18]. 
Using 94 variables (31 CS, 63 LT), we found that 
LT data added important predictive value [10, 18, 
28]. Across 101,110 individuals, models 
integrating both data types performed strongly, 
with RF-LTC achieving an AUC of 0.902. These 
improvements suggest ML tools may reduce 
unnecessary testing, and SCP@Sensitivity offers 
a practical metric for guiding clinical 
deployment. 
 
Study Limitations 
While earlier studies have emphasized how 
useful CAC and CCTA scores can be for evaluating 
ASCVD risk, only a small portion of our 
population—[2,8,32] around 2%—actually had 
those imaging results. Because of that, we left 
those measures out of our feature set. Even so, 
the model performed strongly, reaching an AUC 
of 0.92. Our work was based entirely on 
structured EMR data. We recognize, however, 
that symptoms reported by both patients and 
clinicians often provide important clues when 
diagnosing ASCVD. Incorporating symptom 
information from unstructured clinical notes is 
something we plan to explore in the future, and it 
may further improve the model’s performance. 
One of the key limitations of our study is that we 
did not conduct external validation, which means 
our findings may not fully generalize to other 
settings. Another concern is that including the 
PCE score might introduce some information 
bias, given that knowledge of the score can 
influence how clinicians manage a patient and 
how the disease progresses. That said, our 
models also capture a wide range of other 
cardiovascular risk factors, and the predictive 
accuracy remained essentially unchanged even 
when we removed the PCE feature. 
 
Study Strengths 
To our knowledge, this is the first study to 
examine machine-learning models that can 
estimate population-specific ASCVD risk—aside 
from mortality—without depending on CAC 
scores, while also drawing on both cross-
sectional and longitudinal EMR data from an 
entire regional health network. Because our 
dataset includes people with and without 
symptoms, it mirrors real-world clinical practice 
rather than a narrowly defined research sample. 
The ability of these models to provide short-term 
risk estimates may help clinicians explain risks 
more clearly to their patients and motivate 
timely lifestyle changes, even for individuals who 
have no symptoms. Unlike earlier [5, 28, 30] ML 
work that focused on highly selected cohorts, our 
approach uses routinely captured EMR data that 
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contain substantial clinical detail and are largely 
unaffected by referral patterns. We also 
introduce the SCP@Sensitivity measure as a 
practical way to guide cost-effective ASCVD 
screening and to complement existing tools such 
as net benefit analyses. 
In predicting ASCVD, our results show that 
machine-learning models that use both cross-
sectional data and longer-term clinical trends 
outperform the conventional PCE calculator. The 
predictions became even more accurate when 
changes in vital signs and lab results over time 
were taken into account. The majority of EMR 
systems already have this kind of data, so it is 
plausible that routine clinical practice will 
incorporate the use of ML to estimate ASCVD risk. 
Clinicians may be able to intervene earlier, 
customize treatments more accurately, and 
possibly eliminate the need for tests like stress 
imaging, CCTA, or CAC scoring thanks to these 
models. These methods are now being expanded 
in current research to forecast more precise 
ASCVD-related outcomes. 
 
Summary 
Existing Knowledge 
Machine-learning (ML) models are being used 
more and more to estimate a person’s risk of 
developing atherosclerotic cardiovascular 
disease (ASCVD), providing data-driven insights 
that can enhance and support traditional clinical 
risk assessment methods. 
 
Contributions of This Study 
This study offers a detailed comparison between 
machine-learning models for ASCVD prediction 
and the commonly used ACC/AHA Pooled Cohort 
Equations (PCE). Our findings show that ML-
based approaches can give clinicians a more 
accurate and personalized assessment of ASCVD 
risk. When we combined both longitudinal (LT) 
data—such as changes in lab results and vital 
signs over time—with cross-sectional (CS) 
information from electronic medical records, the 
models became noticeably more accurate. These 
longitudinal patterns added valuable context that 
single-point clinical measurements alone cannot 
capture. We also identified which features had 
the strongest influence on ASCVD risk, offering 
clinicians clearer guidance on which factors 
matter most. In addition, we introduced a new 
metric—Screened Cases Percentage at a given 
Sensitivity (SCP@Sensitivity)—to help estimate 
how much of the population would need further 
screening while still keeping sensitivity high. 
This metric supports more efficient use of 
healthcare resources without compromising the 
quality of risk detection. 
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