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Abstract

For many years, healthcare providers in the United States have relied on
the ACC/AHA Pooled Cohort Equations (PCE) Risk Calculator as their
main resource for estimating a person’s likelihood of developing
atherosclerotic cardiovascular disease, a leading form of heart-related
illness. Despite being widely used, the calculator occasionally
overestimates or underestimates risk but doesn't always perform equally
across different groups. To overcome these challenges, we developed an
automated ASCVD risk-prediction model tailored to particular patient
groups, using machine-learning techniques applied to real-world
electronic medical record data. We then compared its performance with
the PCE approach. In our study, we reviewed 101,110 electronic medical
records from patients seen between January 1, 2009, and April 30, 2020.
The machine-learning models were trained using either cross-sectional
clinical data alone or a combination of cross-sectional information and
longitudinal patterns drawn from lab results and vital-sign
measurements. To understand how each model identified true cases, we
introduced a cost-focused metric called the “Screened Cases Percentage
at a given Sensitivity,” which shows how many patients would require
follow-up testing to detect most ASCVD cases. In every analysis we
conducted, the machine-learning models outperformed the PCE
calculator. The strongest results came from a random forest model that
used both cross-sectional and longitudinal data, achieving an AUC of
0.902 (95% CI: 0.895-0.910). To identify 90% of ASCVD cases, this
approach required screening only 43% of patients, compared with 69%
when relying on the PCE. Overall, combining CS and LT data led to
accurate predictions and fewer unnecessary screenings.

Introduction

mortality rates [1] globally. A cornerstone to

Athero-sclerotic cardiovascular disease (ASCVD)
continues to be a leading global health factor
with tremendous medical and economic
consequences. North America, the Middle East
and Central Asia have highest cardiovascular
disease prevalence, but Eastern Europe and
Central Asia see the highest cardiovascular
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ASCVD prevention is early assessment of risk. For
those found at high risk, awareness of their
ASCVD score can lead to earlier preventive
therapy and protect them from unnecessary
diagnostics [2-4].

Figure 1. Workflow for building and testing
ML models. Data is extracted from EMRs and
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filtered. ML models are built on DataMain,
compared with each other for performance, and
compared against the PCE risk score for the
DataPCE subgroup. Abbreviations: ASCVD,
atherosclerotic cardiovascular disease; CS, cross-
sectional; EMR, electronic medical record; LT,
longitudinal; machine-learning models: REF,
random forest; LR, logistic regression; NN, neural
networks; NB, naive Bayes. Improving ASCVD
risk predictions is becoming more and more
important in routine clinical practice in order to
lower the cost of preventive care and lessen

; Remove EMRs

Clinical queries
E:E‘Stl:unc;umr;‘: [~ without vitals and —>
to xtract EVIRs lab attributes

289,299 patient
EMRs

reliance on costly or invasive testing [5,6]. To
gauge someone’s likelihood of experiencing a
major ASCVD event within the next ten years—
such as a non-fatal heart attack, a non-fatal
stroke, or death caused by coronary heart
disease or stroke—current clinical guidelines
primarily depend on the pooled cohort equations
(PCE) [4,7]. Although there are other scoring
systems, they are frequently designed to target

particular  populations or cardiovascular
outcomes [8, 9].
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Figure 1. Workflow for building and testing ML models. Data is extracted from EMRs and filtered. ML models
are built on DataMain, compared with each other for performance, and compared against the PCE risk score
for the DataPCE subgroup. Abbreviations: ASCVD, atherosclerotic cardiovascular disease; CS, cross-sectional;
EMR, electronic medical record; LT, longitudinal; machine-learning models: RF, random forest; LR, logistic
regression; NN, neural networks; NB, naive Bayes.

Improving ASCVD risk predictions is becoming
more and more important in routine clinical
practice in order to lower the cost of preventive
care and lessen reliance on costly or invasive
testing [5,6]. To gauge someone’s likelihood of
experiencing a major ASCVD event within the
next ten years—such as a non-fatal heart attack,
a non-fatal stroke, or death caused by coronary
heart disease or stroke—current clinical
guidelines primarily depend on the pooled
cohort equations (PCE) [4,7]. Although there are
other scoring systems, they are frequently
designed to target particular populations or
cardiovascular outcomes [8, 9].

Many prediction models are already being used
in clinics, but they can sometimes misrepresent
an individual’s true risk. This happens when
models underestimate or overestimate risk in
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people with differing medical backgrounds,
demographics, or socioeconomic circumstances
[2, 5 10-12]. When risk 1is inaccurately
calculated, patients [2] may receive too much
treatment, too little treatment, or experience
delays in care—issues that contribute to ongoing
clinical inertia. Although modern risk calculators
are increasingly built into electronic medical
record (EMR) systems that offer decision
support, there is still a strong need for tools that
provide a more complete understanding of both
long-term and short-term ASCVD risk—
something current PCE methods [2, 5, 8] often
fail to capture. ML involving mathematics,
statistics and computer science had become a
promising tool for predicting medical data [13].
It is used in multiple health system decision
support tools [14-17] today and has been
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reported to have performance as good as or
better than human developed risk models for
cardiology [5,10].

Machine learning offers a way to make better use
of the long-term information stored in electronic
medical records, helping improve how clinicians
assess a patient’s risk of developing
atherosclerotic cardiovascular disease. Prior
research has examined machine learning models
to identify ASCVD-related events from cross-
sectional clinical variables [10], sometimes with
the addition of CAC scores [10, 18]. Our study
aimed to tackle these gaps by developing a
clinically oriented ASCVD prediction model that
avoids many of the limitations found in current
methods.

Materials And Methods
This study was carried out as a retrospective,
records-based analysis using longitudinal

electronic medical record data from living
patients treated within a regional healthcare
system in the United States. Data extraction was
performed using a clinical decision-support
interface embedded in the EMR, which applied
structured query language to identify relevant
records within the St. Elizabeth Healthcare
System in Kentucky. Patients were eligible if they
had at least one clinical encounter between
January 1, 2009, and April 30, 2020, during which
low-density lipoprotein cholesterol (LDL-C) was
recorded. All living patients with at least one
LDL-C measurement were included. Because
statins reduce LDL-C [4, 19-25] in predictable
ways, pretreatment LDL-C levels for active statin
users were estimated by multiplying their most
recent recorded value by a validated adjustment
factor of 1.43.

Table 1. Diagnostic Criteria for Comorbidities in the Study Population.

Diagnosis

Diagnostic Criteria

Reference

Atherosclerotic cardiovascular
disease (ASCVD)

Having either coronary artery
disease (CAD), cerebrovascular
stroke (CVS), or peripheral artery

disease (PAD)

Atherosclerotic coronary artery
disease (CAD)

Active CAD diagnosis or ICD-10:
120,121,122,123, 124, or I25 on the
EMR problem list or having at least
3 instances of CAD appearing as an
encounter diagnosis in the last 2
years or at least 3 CAD claim
diagnoses in the last 2 years

[33]

Premature coronary artery
disease (Premature CAD)

CAD occurring before age 55 years
in males or 60 years in females

[34]

Ischemic cerebrovascular stroke
(CVS)

Active CVS diagnosis or ICD-10: 163,
174, or 175 on the EMR problem list

[33]

Peripheral artery disease (PAD)

Active PAD diagnosis or ICD-10:
163,174, or I75 on the EMR problem
list

[33]

Diabetes mellitus (DM)

Active DM diagnosis on the EMR
problem list or HbAlc = 6.5% more
than once or random peripheral
blood glucose > 200 mg/dl plus
HbAlc 2 6.5% and no gestational
diabetes type 1 or type 2

[35]

Obesity (OB)

Active obesity diagnosis on the
EMR problem list or most recent
BMI = 30 kg/m2

[36]

Essential hypertension (HTN)

Active essential HTN diagnosis on
the EMR problem list

[37]

Congestive heart failure (CHF)

Active CHF diagnosis on the EMR
problem list

[38]

All extracted data were anonymized according to
HIPAA regulations. De-identified datasets can be
shared upon reasonable request with
institutional approval. The study received review
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board authorization, including a waiver of
informed consent due to its retrospective nature.
From 289,299 screened encounters, 101,110
records with complete laboratory and vital sign
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data formed the primary machine-learning
dataset (DataMain), while 54,850 records with
PCE scores comprised DataPCE. The study design
enabled direct comparison of machine-learning
models with PCE calculations [7] and assessment
of the influence of 10-year longitudinal features.
The diagnostic definitions used to identify
comorbid conditions are outlined in Table 1. In
this study, ASCVD includes patients diagnosed
with  coronary artery disease (CAD),
cerebrovascular stroke (CVS), or peripheral
artery disease (PAD). Once a patient meets the
criteria for CAD or CVS, their medical record is
marked with a corresponding diagnosis date and
remains classified under that condition for the

duration of the study. Some patients may be
diagnosed with more than one ASCVD condition,
such as both CAD and CVS, and may also have
additional comorbidities.

Cross-Sectional Features and Longitudinal
Features

In developing our machine-learning models, we
incorporated both cross-sectional (CS) and
longitudinal (LT) features. The CS feature set,
consisting of 31 variables, included patient
demographics, aggregated clinical risk scores,
family history, assigned clinical care categories,
laboratory measurements, vital signs, and
documented comorbid conditions (Table 2a).

Table 2a. Cross-Sectional (CS) Features used in the ML Models.

Feature Description(s)
Demographics Age
Gender

Age categories: <30, [30,40), [40,50), [50,55), [55,60), [60,65), [65,70),

[70,75), [75,80), >=80

Aggregate risk scores

ASCVD 10-year risk score (PCE)

ASCVD 10-year risk score (PCE) categorical, discretized to 3 categories: null
value, <5, and = 5

Numerical score for the family history group of the Dutch Lipid Clinic
Network (DLCN) (0,1)

Hierarchical Condition Category Risk Score (Risk Score)

Numeric score for the LDL-C group of the DLCN (0,1,3,5,8)

Family history (FHX)

Family history of any coronary artery disease (FHX-++)

Family history of premature coronary artery disease (FHX Premature)

Family history of non-premature coronary artery disease (FHX Non-
premature)

Clinical care group

Current insurance carrier (Carrier)

Current primary care provider is an employee of the healthcare system
where the study is conducted or not (SEP Affiliation)

Have seen endocrinologist in the past or not (Saw Endo)

Patient has account with the MyChart personal health record or not
(MyChart)

Laboratory values

Maximum LDL-C (whether EHR-documented or last estimated
pretreatment) = 190 mg/dL at least twice (LDL-C > 190 x2)

Maximum LDL-C (whether EHR-documented or last estimated
pretreatment) = 190 mg/dL at least once (LDL-C > 190)

The last LDL-C reading before a CAD diagnosis, or the last LDL-C reading in
absence of CAD LDL (Num Before CAD Avg)

The last Non-HDL-C reading before a CAD diagnosis, or the last Non-HDL-C
reading in absence of CAD (Non-HDL-C Num Before CAD Avg)

The last VLDL-C reading before CAD diagnosis, or the last VLDL-C-reading in
absence of CAD (VLDL-C-Num-Before-CAD-Avg)

Maximum Lp(a) (MAX LPA)

Maximum Lp(a) group (whether MAX LPA < 29 or > 50 or null value) (MAX
LPA cat)

Vital signs

Last mean arterial blood pressure (MAP) reading before a CAD diagnosis, or
the last MAP reading in absence of CAD (MAP BEFORE CAD Avg)

Last systolic arterial blood pressure (SYS) reading before a CAD diagnosis,
or the last SYS reading in absence of CAD (SYS BP BEFORE CAD Avg)

Last diastolic arterial blood pressure (DIA) reading before a CAD diagnosis,
or the last DIA reading in absence of CAD (DIA BP BEFORE CAD Avg)
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Comorbidities

Diabetes (T1 or T2) (Yes or No, Number of months of having diabetes before
being CAD diagnosis)

Hypertension (Yes or No, Number of months of having HTN before CAD

diagnosis)

Obesity (Yes or No, Number of months of having OB before CAD diagnosis)

To better capture how a patient’s health changed
over time, we developed an additional set of 63
longitudinal (LT) features. These variables
reflected evolving patterns in lipid levels, HbA1lc,
blood pressure, and other routinely measured
clinical markers. For every patient and each time-
varying parameter, we calculated descriptive
statistics such as the minimum, maximum, mean,

overall time span, value range, standard
deviation, average interval between
measurements, and coefficient of variation.

Collectively, these measures enabled the LT
feature set to represent both actual values and
individual variability across time.

For patients without an ASCVD diagnosis, all
recorded measurements were used to generate
longitudinal statistics. For those who developed
ASCVD, only data collected before diagnosis were
included, ensuring the LT features reflected true
pre-diagnostic information and avoided future
data influencing model training.

Table 2b. Longitudinal Features (LT) for Vital Signs* and Laboratory Values.

Feature Description
Minimum (MIN) Lowest value of all patient recorded values for a feature
Maximum (MAX) Highest value of all patient recorded values for a feature
Average (MEAN) Average value for all recorded values of the feature
Reading Number Number of recorded readings for each measure
(COUNT)
Reading-time range Time difference, in days, between the first and last recorded values for the
(TRANGE)* feature
Reading-value range Difference between the smallest and largest recorded value for the feature
(VRANGE)§
Standard Deviation Amount of variation between the recorded values for the feature
(STDEV)
Average reading days Average time, in days, between consecutive recorded values for the feature
(Avg-Test-Day)||
Coefficient of variation Standard measure of dispersion of a probability distribution or frequency
(CV)# distribution

*Vital signs: diastolic BP, systolic BP, mean arterial pressure (MAP).

[Laboratory values: LDL-C, total cholesterol,
HDL-C, non-HDL-C, triglycerides, HbAlc.
fReading-time range: to determine if the length
of the patient’s care (reflected by the history of
vital and laboratory records) has had any impact
on the risk for developing an ASCVD.

§ Reading-value range: might be significant for
the cases with large reading differences.

|| Average reading days: to determine if the
frequency of patient care, as reflected by
patients’ vital signs (e.g., BP), being checked in a
professional environment and more frequent
laboratory tests (e.g., lipid profile, LDL-C) have
any impact on the risk for developing ASCVD.

# Coefficient of variation (also known as the
relative standard deviation): to study whether
the fluctuation of laboratory values and vital
sign readings contribute to a patient’s risk for
developing ASCVD.
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ML Models

To assess each patient’s risk of developing
ASCVD, we built automated prediction models
using four different machine-learning
techniques: logistic regression, naive Bayes,
neural networks, and random forest. Each model
was developed twice—first using only cross-
sectional (CS) clinical features, and again using a
combined set of CS and longitudinal (LT) features
(LTC). Using a standard two-by-two contingency
structure, we assessed model performance
through multiple evaluation measures, applying
10-fold cross-validation on two datasets,
DataMain and DataPCE, to ensure reliable
comparison.

Screened Cases Percentage @ Sensitivity
Level

For a prediction model to be practical, it must
achieve high sensitivity without requiring
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excessive patient screening. To address this, we
introduced the Screened Cases Percentage at a
given Sensitivity (SCP@Sensitivity), a metric that
indicates how much of the population must be

evaluated to reach a chosen sensitivity while
limiting unnecessary tests. The corresponding
formula is provided below:

SCP @Sensitivity(S) =
[Subpopulation of patients who must be screened to achieve the target sensitivity level of S|

|Overall Patient Population/

where |X| is a notation for the cardinality of a set X.

Practically speaking, this quantity also has
clinical value: it provides a way to calculate the
resources required for screening a population at
sensitivity target. Therefore, it supports efforts to
reduce unnecessary diagnostic tests. In theory,
the proportion of patients who would need to be
screened to identify every ASCVD-positive
case—represented as SCP@Sensitivity(1)—
could drop to as low as 11.56% in the DataPCE
cohort. This value is for the 6,339 people with
confirmed ASCVD among the possible 54,850
patients in the analysis in DataPCE.

Results

Model Performance presents a comparison of all
developed models and their AUC results to
highlight which combinations of methods and
feature sets performed most effectively. Impact
of Features used to Build the Models takes a
closer look at the top-performing model and
examines which features played the most
important roles. ML comparison with the PCE
features and without the PCE features assesses
model performance with and without PCE
variables to determine whether the PCE score

SCP@Sensitivity(0.9)] introduces the
SCP@Sensitivity metricc and  Probability
Threshold for DataMain Model Performance
evaluates threshold-based performance of the
top model.

Model Performance

Among all models evaluated, the RF-LTC
approach demonstrated the strongest overall
performance for ASCVD prediction, achieving an
AUC of 0.902 (95% CI: 0.895-0.910), clearly
outperforming RF-CS (AUC 0.82), NN-LTC (AUC
0.896), LR-LTC (AUC 0.888), and NB-LTC (AUC
0.817). The AUC values shown in Fig. 2 represent
an aggregated assessment derived from
probability estimates corresponding to each
sensitivity-specificity pair on the ROC curve.
The neural network model was structured with
an inputlayer, a single hidden layer of 150 nodes,
and an output layer, and was trained using
backpropagation with a learning rate of 0.01 and
momentum of 0.9. The random forest model
employed bootstrap sampling and the Gini
criterion without restrictions on tree depth.
Logistic regression was implemented using an L2
penalty, C = 1.0, and a maximum of 100 iterations.
The naive Bayes model followed a Gaussian
framework without predefined priors. All
algorithms were executed using the Scikit-learn
library [26].

RF_LTC_AUC=0.902
NN_LTC_AUC=0.896
LR_LTC_AUC=0.888
NB_LTC_AUC=0.817
RF_CS_AUC=0.823
LR_CS_AUC=0.836
NN_CS_AUC=0.824
NB_CS_AUC=0.774

provides meaningful additional value. ML
comparison with the PCE Calculator summarizes
statistical comparisons, Screened cases
percentage at sensitivities 50% and 90%
[SCP@Sensitivity(0.5) and
1.0
0.8
£ 0.6
=
2z
% 0.4
0.2
0.0

0.2

0.4

0.8

0.6
1 - Specificity

1.0

Figure 2. Area Under Curve (AUC) for DataMain. As a measure for individual model performance for
predicting ASCVD in the DataMain cohort, RF-LTC produced the best AUC for ASCVD prediction.
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Impact of Features used to build the Models

To better understand how different variables
influenced the models, we used Shapley Additive
Explanations (SHAP) on the DataMain dataset
(Fig. 3). In the RF-CS model, age stood out as the
most powerful predictor, followed by existing
health conditions, overall risk scores, and LDL-C
levels. In contrast, the LTC model placed greater
weight on longitudinal information—especially
trends in blood pressure, lipid levels, and HbA1lc.

Even so, age remained one of the strongest
contributors in both the RF-LTC and RF-CS
models, underscoring its well-known importance
in ASCVD risk. Interestingly, the PCE-derived
features did not rank among the top drivers of
prediction. The ASCVD_10_YR_SCORE_score
appeared eighth in both models, while the
categorical version of this score ranked even
lower—tenth in the RF-LTC model and eleventh
in the RF-CS model.
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Figure 3. Shapley Additive Explanations (SHAP)[39] Diagram. This illustrates the relative importance of
features for: (a) longitudinal features plus cross-sectional features (LTC), and (b) cross-sectional features
(CS) only on the RF models, since RF-LTC showed the best performance according to the AUC measure.
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The blue and red points in each row represent
data cases having low to high values of the
specific variable: blue for low and red for high.
The X-axis represents the SHAP value, which
quantifies the variable’s impact on the model [i.e.,
tendency to drive the predictions toward an
event (positive SHAP value, i.e., ASCVD) or non-
event (negative SHAP value, i.e., non-ASCVD)].
The top 20 variables contributing most to the
class separability of the model are shown in the
figure. Age, comorbid- ities, and aggregate risk
scores were the most predictive features in the
RF-CS model, followed by LDL-C features. The BP
TRANGE measure, lipid TRANGE measure, and
HbAlc TRANGE measure were the most
predictive LT features. In both models, age was
one of the most important features. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)

ML Comparison with the PCE Features and
without the PCE Features

To better understand the impact of PCE-derived
variables on the models, we re-evaluated all

models in the DataPCE cohort, running them both
with and without the PCE scores and their
categorical forms. What stood out was that the
NN-LTC model performed exactly the same,
holding an AUC of 0.896 even after the PCE inputs
were removed. The RF-LTC model experienced
only a slight decline in performance, with its AUC
decreasing to 0.894—just a small drop of 0.006.
Overall, these results indicate that the core
longitudinal and cross-sectional features used by
the models carry most of the predictive power,
even when the PCE variables are not included.

ML Comparison with the PCE Calculator

To evaluate performance, we compared our
automated machine-learning models with the
PCE 10-year risk score commonly used in clinical
practice. Although the ML models were
developed using the DataMain cohort, the
comparison relied on the DataPCE dataset, as
PCE scores were available only there.

1.0

0.8

o
o

Sensitivity

o
IS

0.2

LR_LTC_AUC=0.880
RF_LTC_AUC=0.877
NN_LTC_AUC=0.876
NB_LTC_AUC=0.804
LR_CS_AUC=0.797
RF_CS_AUC=0.762
NN_CS_AUC=0.777
NB_CS_AUC=0.740
PCE_AUC=0.712

0.0 ¥-
0.0

0.2

0.4

0.6 0.8 1.0
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Figure 4. Area under the curve (AUC) for DataPCE. As a measure of individual model performance for
predicting ASCVD in the DataPCE group, LR-LTC pro- duced the best AUC.

The AUC values derived from 10-fold cross-
validation are shown in Fig. 4. When predicting
ASCVD risk, all ML methods performed better
than the conventional PCE calculator (AUC 0.712;
95 percent C10.700-0.730). Among them, the LR-
LTC model showed the strongest performance,
achieving an AUC of 0.880 (95% CI 0.867-0.894)
in the DataPCE dataset.
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Screened Cases Percentage at Sensitivities
50% and 90% [SCP@Sensitivity(0.5) and
SCP@Sensitivity(0.9)]

In clinical practice, risk-prediction models are
most useful when they help identify individuals
who are more likely to have a positive diagnosis
while limiting the number of people who must
undergo additional laboratory or confirmatory
testing. This balance is critical because
increasing sensitivity—although desirable for
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capturing more true positive cases—also
increases the proportion of the population

requiring  further  diagnostic  evaluation.
Therefore, a model that achieves higher
sensitivity with fewer individuals needing

follow-up testing (i.e., lower SCP@Sensitivity) is
considered more efficient and clinically
meaningful. At any chosen sensitivity level (S), an
effective  machine-learning model should
demonstrate a higher positive predictive value
(PPV) and a reduced SCP@Sensitivity(S). In
current clinical workflows, PCE thresholds of 5%
and 20% are frequently used to distinguish low-
risk from high-risk patients [4, 30]. Accordingly,
we assessed the SCP@Sensitivity of all models at
sensitivity levels of 0.90—aligned with the 5%
PCE cutoff—and 0.50—aligned with the PCE
score of 18.5%. Within the DataPCE cohort, the
theoretical minimum SCP@Sensitivity(0.90) is
10.40%. In contrast, the PCE method requires
screening all individuals with a risk score of 5%
or higher, which in our dataset accounted for
68.8% of the population (S7 Table). The NN-LTC
model demonstrated a substantial improvement,
identifying the same proportion of true positives
while requiring screening of only 43.4% of the
population at a probability threshold of 3.2%. All
ML models outperformed the PCE method at this
sensitivity level, consistently reducing the
proportion of individuals requiring further
evaluation.

Table, the PCE calculator requires screening
25.6% of the population at a cutoff of 18.6%. In
comparison, the RF-LTC model achieves the
same sensitivity by screening only 7.1% of
individuals at the same probability threshold.
Again, all ML models showed superior
performance relative to the PCE score, requiring
substantially fewer individuals to be screened
while maintaining equivalent sensitivity.

Probability Threshold for DataMain Model
Performance

In clinical settings, decision-making is typically
binary, with outcomes classified as either
positive (1) or negative (0). In contrast, machine-
learning models generate continuous risk scores
ranging between 0 and 1, which must be
interpreted using a threshold probability (t). A
predicted score equal to or exceeding t is
considered a positive prediction, while a score
below t is interpreted as negative. Given that the
RF-LTC model demonstrated the highest overall
AUC values (Fig. 2), we present its performance
along with corresponding threshold
probabilities (Table 3) to guide clinicians in
selecting optimal thresholds based on clinical
priorities. The AUC values reported represent
point-level estimates associated with a single
sensitivity-specificity pairing at the chosen
threshold. Performance metrics for the other top
models, NN-LTC and LR-LTC, along with their

Similarly, to capture 50% of true positive cases, thresholds. All remaining models

the theoretical minimum SCP@Sensitivity(0.50) underperformed relative to these three.

is 5.78% in the DataPCE cohort. As shown in S8

Table 5. RF-LTC Model Performance on DataMain for Various Probability Threshold Values™ ¥

Cut-off AUC | NPV | Specificity PPV | Sensitivity F1 SCP@Sensitivity
Probability

0.05 0.673 | 0.982 0.378 0.546 | 0.247 0.967 0.393 68.2%
0.1 0.759 | 0.975 0.590 0.735 | 0.323 0.928 0.479 50.0%
0.15 0.803 | 0.968 0.718 0.824 | 0.398 0.888 0.550 38.8%
0.2 0.820 | 0.960 0.797 0.871 | 0.466 0.842 0.600 31.4%
0.25 0.826 | 0.953 0.853 0.900 | 0.533 0.799 0.640 26.1%
0.3 0.824 | 0.945 0.892 0.918 | 0.596 0.756 0.666 22.1%
0.35 0.816 | 0.938 0.920 0.929 | 0.651 0.712 0.680 19.0%
0.4 0.806 | 0.932 0.941 0.936 | 0.704 0.672 0.687 16.6%
0.45 0.793 | 0.925 0.956 0.940 | 0.751 0.629 0.685 14.6%
0.5 0.776 | 0.917 0.968 0.942 | 0.795 0.584 0.673 12.8%
0.55 0.759 | 0.910 0.977 0.942 | 0.832 0.541 0.655 11.3%
0.6 0.740 | 0.903 0.983 0.941 | 0.861 0.497 0.630 10.0%
0.65 0.720 | 0.895 0.988 0.940 | 0.892 0.451 0.599 8.8%
0.7 0.699 | 0.888 0.992 0.937 | 0916 0.406 0.563 7.7%
0.75 0.676 | 0.880 0.995 0.934 | 0934 0.358 0.517 6.7%
0.8 0.652 | 0.872 0.997 0.930 | 0.952 0.307 0.465 5.6%
0.85 0.626 | 0.864 0.998 0.926 | 0.964 0.254 0.402 4.6%
0.9 0.598 | 0.855 0.999 0.922 | 0.975 0.197 0.328 3.5%
0.95 0.568 | 0.846 1.000 0.916 | 0.987 0.136 0.239 2.4%
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* Various methods may be used to calculate the
probability threshold, t: i) assigned as 0.5
(halfway within the 0-1 range); ii) based on
model performance [select the value from the set
(0.05, 0.1, 0.15, ..., 0.95) that achieves the best
performance metric (AUC, PPV or sensitivity); or
iii) based on the SCP, PPV, and sensitivity of the
model for that threshold value (the higher ¢, the
higher the PPV, but the lower the sensitivity and
SCP of the model).

Y Color variation indicates low (lightest) to high
(darkest) AUC.

For the RF-LTC model, the highest AUC (0.826)
was achieved at a threshold of 0.25. In terms of
the F1 score, optimal performance (0.687)
occurred at a threshold of 0.40, with additional
metrics detailed in Table 3. Clinicians can select
thresholds according to specific needs; for
example, a threshold of 0.25 achieves
approximately 80% sensitivity, while a threshold
of 0.50 corresponds to 80% positive predictive
value (PPV). This flexibility enables careful
balancing between minimizing misclassification
of high-risk patients as low risk and maximizing
opportunities for timely interventions and
potentially life-saving management strategies.

Discussion
Research exploring machine-learning
approaches for estimating atherosclerotic

cardiovascular disease (ASCVD) risk has yielded
mixed but generally encouraging insights. Early
studies [10, 18] indicated that ML-based models
can complement standard cardiac evaluations,
either by improving interpretation of imaging
results or [27] by predicting a broad range of
ASCVD-related outcomes [5,10,18,28-30].
Notable work by Motwani et al. [28], van
Rosendael et al. [30], and Nakanishi et al. [10]—
across cohorts ranging from 8,844 to over 66,000
participants—used coronary calcium scores and
imaging data to estimate short- and long-term
mortality and coronary heart disease risk. Ward
et al. [18] and colleagues examined five-year
ASCVD risk using structured clinical information
from electronic medical records.

In comparison, our study observed similar mean
ASCVD risk scores in the DataMain cohort (7.19
11.313), while the DataPCE cohort showed
substantially higher averages (13.26 * 12.47).
Although mortality could not be assessed
because deceased individuals were not included,
we focused on current ASCVD risk by
incorporating both clinical symptom (CS) data
and longitudinal trajectory (LT) patterns
preceding diagnosis [30]. Earlier models paired
clinical factors with imaging, but many were
limited by selection bias [30]. Consistent with
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previous findings, our ML models surpassed
pooled cohort equation (PCE) estimates [18].
Using 94 variables (31 CS, 63 LT), we found that
LT data added important predictive value [10, 18,
28]. Across 101,110 individuals, models
integrating both data types performed strongly,
with RF-LTC achieving an AUC of 0.902. These
improvements suggest ML tools may reduce
unnecessary testing, and SCP@Sensitivity offers
a practical metric for guiding clinical
deployment.

Study Limitations

While earlier studies have emphDasized how
useful CAC and CCTA scores can be for evaluating
ASCVD risk, only a small portion of our
population—[2,8,32] around 2%—actually had
those imaging results. Because of that, we left
those measures out of our feature set. Even so,
the model performed strongly, reaching an AUC
of 0.92. Our work was based entirely on
structured EMR data. We recognize, however,
that symptoms reported by both patients and
clinicians often provide important clues when
diagnosing ASCVD. Incorporating symptom
information from unstructured clinical notes is
something we plan to explore in the future, and it
may further improve the model’s performance.
One of the key limitations of our study is that we
did not conduct external validation, which means
our findings may not fully generalize to other
settings. Another concern is that including the
PCE score might introduce some information
bias, given that knowledge of the score can
influence how clinicians manage a patient and
how the disease progresses. That said, our
models also capture a wide range of other
cardiovascular risk factors, and the predictive
accuracy remained essentially unchanged even
when we removed the PCE feature.

Study Strengths

To our knowledge, this is the first study to
examine machine-learning models that can
estimate population-specific ASCVD risk—aside
from mortality—without depending on CAC
scores, while also drawing on both cross-
sectional and longitudinal EMR data from an
entire regional health network. Because our
dataset includes people with and without
symptoms, it mirrors real-world clinical practice
rather than a narrowly defined research sample.
The ability of these models to provide short-term
risk estimates may help clinicians explain risks
more clearly to their patients and motivate
timely lifestyle changes, even for individuals who
have no symptoms. Unlike earlier [5, 28, 30] ML
work that focused on highly selected cohorts, our
approach uses routinely captured EMR data that
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contain substantial clinical detail and are largely
unaffected by referral patterns. We also
introduce the SCP@Sensitivity measure as a
practical way to guide cost-effective ASCVD
screening and to complement existing tools such
as net benefit analyses.

In predicting ASCVD, our results show that
machine-learning models that use both cross-
sectional data and longer-term clinical trends
outperform the conventional PCE calculator. The
predictions became even more accurate when
changes in vital signs and lab results over time
were taken into account. The majority of EMR
systems already have this kind of data, so it is
plausible that routine clinical practice will
incorporate the use of ML to estimate ASCVD risk.
Clinicians may be able to intervene earlier,
customize treatments more accurately, and
possibly eliminate the need for tests like stress
imaging, CCTA, or CAC scoring thanks to these
models. These methods are now being expanded
in current research to forecast more precise
ASCVD-related outcomes.

Summary

Existing Knowledge

Machine-learning (ML) models are being used
more and more to estimate a person’s risk of
developing  atherosclerotic  cardiovascular
disease (ASCVD), providing data-driven insights
that can enhance and support traditional clinical
risk assessment methods.

Contributions of This Study

This study offers a detailed comparison between
machine-learning models for ASCVD prediction
and the commonly used ACC/AHA Pooled Cohort
Equations (PCE). Our findings show that ML-
based approaches can give clinicians a more
accurate and personalized assessment of ASCVD
risk. When we combined both longitudinal (LT)
data—such as changes in lab results and vital
signs over time—with cross-sectional (CS)
information from electronic medical records, the
models became noticeably more accurate. These
longitudinal patterns added valuable context that
single-point clinical measurements alone cannot
capture. We also identified which features had
the strongest influence on ASCVD risk, offering
clinicians clearer guidance on which factors
matter most. In addition, we introduced a new
metric—Screened Cases Percentage at a given
Sensitivity (SCP@Sensitivity)—to help estimate
how much of the population would need further
screening while still keeping sensitivity high.
This metric supports more efficient use of
healthcare resources without compromising the
quality of risk detection.
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