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Abstract 

Understanding visual scenes comprehensively remains a central 
challenge in Computer vision and artificial intelligence. The field has 
witnessed tremendous evolution from traditional feature-based methods 
to deep learning architectures capable of simultaneous object detection, 
precise segmentation and complex relationship modeling. This review 
synthesizes recent developments across these interconnected domains, 
with particular emphasis on the YOLO family evolution through YOLOv10, 
transformer-based detection frameworks including DETR and its 
variants, advanced segmentation models such as SAM and HQ-SAMand 
scene graph generation techniques. We examine how multi-task learning 
and multimodal integration strategies are reshaping scene understanding 
capabilities. Critical analysis of current limitations—including 
Computational efficiency, domain generalization, data imbalance and 
interpretability—guides our discussion of emerging research directions. 
Foundation models, efficient transformers and zero-shot learning 
represent promising avenues for advancing robust, scalable scene 
understanding systems applicable to autonomous vehicles, medical 
imaging, robotics and intelligent surveillance. 
 

 
Introduction 
Visual scene understanding encompasses the 
Computational ability to parse images at multiple 
semantic levels—from detecting individual 
objects and delineating their boundaries to 
reasoning about spatial relationships and 
contextual interactions [1][2]. Unlike isolated 
recognition tasks, holistic scene understanding 
requires integrated processing of geometry, 
semantics and relational information [3][4]. The 
significance of this capability extends across 
diverse application domains including 
autonomous navigation systems [5], medical 
image analysis [6][7], robotic manipulation [8], 
augmented reality [9]and intelligent surveillance 
[10]. 

The deep learning revolution, initiated by 
convolutional neural networks (CNNs), 
fundamentally transformed Computer vision 
[11][12]. Subsequent innovations in residual 
connections, feature pyramid networks and 
attention mechanisms progressively improved 
detection and segmentation accuracy 
[13][14][15]. More recently, transformer 
architectures originally developed for natural 
language processing have demonstrated 
remarkable effectiveness in visual tasks, 
enabling global context modeling through self-
attention mechanisms [16][17]. 
Contemporary research increasingly focuses on 
unified frameworks that jointly address multiple 
subtasks. Rather than treating detection, 
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segmentation and relationship prediction as 
independent problems, modern approaches 
exploit synergies through shared 
representations and multi-task learning 
[18][19]. This paradigm shift toward integration 
reflects growing recognition that scene 
understanding emerges from coordinated 
processing of complementary information 
sources [20]. 
In contrast to prior surveys that treat object 
detection, segmentation, and relationship 
modeling as largely independent topics, this 
review emphasizes their integrated role within a 
unified scene understanding pipeline. The 
analysis systematically aligns architectural 
trends, performance metrics, and application 
demands across these three tasks, culminating in 
a comparative framework that explicitly 
connects model properties (mAP, FPS and 
parameter counts) to real-time and high-
accuracy deployment scenarios. Furthermore, by 
mapping current limitations such as domain 
shift, data imbalance and scalability to specific 
architectural choices, the review identifies 
concrete research gaps that can guide future 
model design rather than only summarizing 
existing methods. 
 
1. Review methodology 
The literature surveyed in this paper was 
collected primarily from leading conferences and 
journals in computer vision and artificial 
intelligence between 2015 and 2025, with 
emphasis on works introducing influential 
architectures (e.g., YOLOv5–v10, DETR variants, 
SAM and recent scene graph models). Candidate 
papers were identified using keyword queries 
related to object detection, segmentation, scene 
graphs, and multimodal scene understanding 
and then filtered based on citation impact, 
reported performance on standard benchmarks 
such as COCO and relevance to integrated 
pipelines. Quantitative information, including 
mAP, FPS and model size, was extracted from 
original publications or official repositories 
when available and normalized where necessary 
to enable fair comparison in the comparative 
analysis table. Although the review does not 
perform a full statistical meta-analysis, this 
structured selection and aggregation process 
supports a consistent and transparent synthesis 
of recent advances. 
 
Object Detection: Architectural Evolution 
Object detection the task of localizing and 
classifying objects within images—has 
progressed through distinct evolutionary phases. 
Two-stage detectors pioneered by R-CNN and 
subsequently refined through Fast R-CNN and 

Faster R-CNN established region proposal 
networks as effective frameworks [21][22]. 
These approaches achieve high accuracy by 
separating candidate generation from 
classification, though at Computational cost. 
The YOLO family represents a paradigm shift 
toward single-stage, real-time detection [23]. 
Recent iterations demonstrate continuous 
improvement: YOLOv5 introduced flexible 
scaling and anchor-free designs [24], YOLOv8 
incorporated advanced data augmentation and 
optimization strategies [25], while YOLOv10 
achieves state-of-the-art performance through 
NMS-free end-to-end training, reducing 
inference latency while maintaining accuracy 
[26][27]. These advancements enable 
deployment on resource-constrained edge 
devices, critical for real-world applications. 
Transformer-based detection represents 
another breakthrough direction. DETR 
eliminated hand-crafted components like anchor 
boxes through direct set prediction with 
bipartite matching [28]. Subsequent refinements 
including Deformable DETR addressed 
convergence challenges through deformable 
attention modules [29]. RT-DETR specifically 
targets real-time scenarios by optimizing 
encoder-decoder architectures [30]. Despite 
higher Computational requirements compared to 
YOLO variants, transformers excel at capturing 
long-range dependencies and complex spatial 
relationships [31][32]. 
 
Image Segmentation: From Pixels to 
Semantics 
Segmentation techniques partition images into 
meaningful regions, operating at varying 
granularities. Semantic segmentation assigns 
class labels to each pixel without differentiating 
instances, while instance segmentation 
distinguishes individual objects [33][34]. 
Panoptic segmentation unifies these approaches 
by simultaneously producing semantic labels for 
background regions and instance identities for 
foreground objects [35]. 
Encoder-decoder architectures dominate 
segmentation research. U-Net, originally 
developed for biomedical imaging, employs 
symmetric skip connections to preserve spatial 
information during up-sampling [36]. DeepLab 
introduced atrous convolution enabling flexible 
receptive field expansion without resolution loss 
[37]. Mask R-CNN extended Faster R-CNN 
architecture with parallel mask prediction 
branches, establishing the standard for instance 
segmentation [38]. 
Foundation models represent a paradigm shift 
toward generalizable segmentation. The 
Segment Anything Model (SAM) demonstrates 
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remarkable zero-shot capabilities through 
prompt-based interfaces, enabling adaptation to 
novel categories without fine-tuning [39]. 
Subsequent work including HQ-SAM focuses on 
improving mask boundary precision [40], while 
SEEM explores multi-granularity prompting for 
diverse segmentation tasks [41]. These models 
trained on massive datasets exhibit strong 
transferability across domains [42]. 
 
Integrated Detection and Segmentation 
Multi-task learning frameworks that jointly 
optimize detection and segmentation 
demonstrate superior efficiency and accuracy 
compared to independent models [43][44]. 
Shared feature extraction reduces redundant 
Computation while enabling mutual 
reinforcement between tasks. Vision 
transformers facilitate integration through 
flexible token-based processing. ViT-based 
models treat image patches as sequences, 
applying self-attention to capture relationships 
across spatial locations [45]. Hierarchical 
variants like Swin Transformer enable multi-
scale reasoning essential for handling objects at 
diverse resolutions [46]. 
Multimodal fusion strategies enrich scene 
understanding by incorporating complementary 
information sources. Depth sensing provides 
geometric cues disambiguating occluded or small 
objects [47]. Language embeddings enable open-
vocabulary detection through visual-linguistic 
alignment [48]. Cross-modal attention 
mechanisms learn adaptive fusion weights, 
emphasizing relevant modalities based on scene 
characteristics [49]. These approaches 
demonstrate particular value in challenging real-

world conditions where single-modality 
methods struggle [50]. 
 
Relationship Detection and Scene Graphs 
Visual relationship detection moves beyond 
object-centric analysis to model interactions and 
spatial configurations. Scene graphs provide 
structured representations encoding objects as 
nodes and relationships as directed edges [1][2]. 
This formalism supports higher-level reasoning 
tasks including visual question answering, image 
captioning and embodied AI [3]. 
Early approaches applied message passing over 
detected objects. Neural Motifs captured 
statistical regularities in relationship co-
occurrence patterns [4]. Iterative Message 
Passing (IMP) refined predictions through 
recurrent modules propagating contextual 
information [5]. Graph convolutional networks 
enabled more sophisticated aggregation 
schemes, learning edge representations from 
node features and graph topology [6][7]. Recent 
transformer-based methods leverage self-
attention for flexible relationship modeling 
[8][9]. 
 
Comparative Performance Analysis 
Systematic comparison reveals distinct trade-
offs among contemporary approaches. Table 1 
summarizes representative models evaluated on 
COCO dataset [20], the standard benchmark for 
detection and segmentation. Performance 
metrics include mean Average Precision (mAP), 
inference speed in Frames Per Second (FPS), 
model complexity measured in parameters and 
suitability for real-time deployment. 

 
Table 1: Comparative Performance Analysis of State-of-the-Art Models on COCO Dataset 

Model Year Type mAP@0.5:0.95 FPS Params 
(M) 

Real-Time 

YOLOv5 2020 One-Stage 50.7 140 7.2 Yes 

YOLOv8 2023 One-Stage 53.9 80-155 11.2 Yes 

YOLOv10 2024 One-Stage 55.4 180+ 6.8 Yes 

Faster R-CNN 2017 Two-Stage 42.7 5-7 41.8 No 

Mask R-CNN 2017 Two-Stage 44.3 5-7 44.2 No 

DETR 2020 Transformer 50.1 28 41.3 Limited 

Deformable 
DETR 

2021 Transformer 51.8 19 40.0 Limited 

RT-DETR 2023 Transformer 54.3 108 32.0 Yes 

SAM 2023 Foundation N/A 10-15 636 No 

HQ-SAM 2023 Foundation N/A 8-12 641 No 

 
The models listed in Table 1 were selected 
because they represent widely adopted baselines 
or state-of-the-art detectors and segmenters that 
are frequently used as reference points in recent 
literature (e.g., YOLOv5/8/10, Faster/Mask R-

CNN, DETR variants and foundation models such 
as SAM). Mean Average Precision (mAP) at IoU 
thresholds from 0.5 to 0.95, frames per second, 
and parameter counts were chosen as primary 
metrics because they jointly capture accuracy, 



Recent Advances in Object Detection, Segmentation, Integration and Relationship Detection with Special Reference to 
Enhanced Scene Understanding 

268 

 

real-time capability and model complexity, which 
are critical trade-offs for practical scene 
understanding systems deployed on embedded 
or cloud platforms. The values reported are taken 
from original papers or official implementations 
on the COCO benchmark, thereby allowing a fair, 
dataset-consistent comparison. 
While the table highlights clear performance 
gains of newer models such as YOLOv10 and RT-
DETR, it also reveals that improvements in mAP 
are often accompanied by increased 
architectural complexity and training cost, which 
may not translate directly into benefits for all 
deployment scenarios. For example, foundation 
models like SAM exhibit impressive zero-shot 
segmentation capabilities but require orders-of-
magnitude more parameters and computational 
resources than task-specific detectors, 
suggesting that careful cost–benefit analysis is 
necessary when choosing models for embedded 
or real-time systems. 
The comparative analysis reveals several key 
insights. YOLOv10 achieves optimal balance for 
real-time applications, maintaining high 
accuracy (55.4% mAP) with minimal parameters 
(6.8M), representing a 39% reduction compared 
to YOLOv8 while improving accuracy by 1.5 
percentage points [26][27]. This efficiency stems 
from its NMS-free architecture and optimized 
backbone design. 
Transformer-based models demonstrate 
competitive accuracy but exhibit variable real-
time capabilities. DETR and Deformable DETR, 
while pioneering in eliminating hand-crafted 
components, suffer from lower inference speeds 
(19-28 FPS) limiting deployment in time-critical 
applications [28][29]. RT-DETR addresses this 
limitation through architectural optimizations, 
achieving 108 FPS while maintaining 54.3% 
mAP, making it viable for real-time scenarios 
[30]. 
Two-stage detectors (Faster R-CNN, Mask R-
CNN) continue to serve specialized applications 
prioritizing accuracy over speed. Their slower 
inference (5-7 FPS) and higher parameter count 
(40+ M) restrict real-time deployment but 
remain valuable for offline analysis and high-
precision requirements [21][22][38]. 
Foundation models like SAM and HQ-SAM 
represent a different paradigm, prioritizing 
generalizability over speed. With 636-641M 
parameters, these models enable zero-shot 
segmentation across domains but require 
substantial Computational resources, achieving 
only 8-15 FPS [39][40]. Their value lies in 
versatility rather than real-time performance. 
Selection criteria depend on application 
constraints. Edge devices and mobile platforms 
benefit from lightweight models (YOLOv10, 

YOLOv5). Autonomous vehicles requiring real-
time processing favor efficient transformers (RT-
DETR) or optimized YOLO variants. Medical 
imaging and scientific analysis tolerate slower 
speeds for higher accuracy (Faster R-CNN, Mask 
R-CNN). Domain adaptation scenarios leverage 
foundation models despite Computational 
overhead. 
 
Open Challenges and Future Directions 
Despite substantial progress, fundamental 
challenges remain. Domain generalization 
presents persistent obstacles, as models trained 
on curated datasets often exhibit performance 
degradation when deployed in novel 
environments [10][11]. Data efficiency 
represents another critical concern, with deep 
models demanding extensive labeled data costly 
to acquire especially for specialized domains 
[12][13]. 
Computational complexity limits practical 
deployment. State-of-the-art transformers incur 
quadratic complexity with input size, hindering 
edge device deployment. Efficient architectures 
balancing expressiveness and efficiency remain 
essential [14][15]. Long-tail distributions in real-
world visual data exhibit severe imbalance with 
rare categories and relationships systematically 
underrepresented [16][17]. 
Future research directions include foundation 
models following successes in natural language 
processing [18][19], efficient transformers 
reducing attention complexity [20][21], unified 
frameworks jointly optimizing detection, 
segmentation and relationship prediction 
[22][23], zero-shot generalization leveraging 
vision-language pretraining [24][25]and 
explainable representations improving 
debugging and enabling human oversight 
[26][27]. 
Beyond technical performance, enhanced scene 
understanding systems raise important ethical 
and societal concerns. Models trained on large-
scale web or surveillance data can inadvertently 
encode and amplify biases related to gender, skin 
tone, clothing, or geographic context, which may 
lead to unfair treatment in applications such as 
public safety monitoring or autonomous driving 
in underrepresented regions. The increasing use 
of high-resolution detection and segmentation 
also exacerbates privacy risks, particularly when 
models are deployed in smart cities, workplaces, 
or healthcare environments. Future research 
should therefore incorporate fairness-aware 
training objectives, privacy-preserving 
techniques such as federated learning or on-
device inference and transparent reporting of 
dataset composition and failure modes so that 
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downstream stakeholders can understand and 
mitigate potential harms. 
 
Conclusion 
Visual scene understanding has advanced 
dramatically through architectural innovations 
spanning detection, segmentation and relational 
reasoning. The YOLO family demonstrates that 
real-time accuracy is achievable through careful 
architectural design. Transformers enable global 
context modeling previously unattainable. 
Foundation models suggest paths toward broad 
generalization. Integration of these advances 
produces systems approaching comprehensive 
scene perception. 
Yet significant challenges persist. Domain 
adaptation, data efficiency, Computational 
constraints and interpretability require 
continued attention. Ethical deployment 
demands careful consideration of biases and 
privacy implications. Future progress depends 
on addressing these fundamental issues 
alongside architectural refinements. The 
ultimate goal—machine vision rivaling biological 
perception—remains distant. However, current 
trajectories suggest steady progress toward truly 
intelligent visual systems. 
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