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Abstract

Understanding visual scenes comprehensively remains a central
challenge in Computer vision and artificial intelligence. The field has
witnessed tremendous evolution from traditional feature-based methods
to deep learning architectures capable of simultaneous object detection,
precise segmentation and complex relationship modeling. This review
synthesizes recent developments across these interconnected domains,
with particular emphasis on the YOLO family evolution through YOLOv10,
transformer-based detection frameworks including DETR and its
variants, advanced segmentation models such as SAM and HQ-SAMand
scene graph generation techniques. We examine how multi-task learning
and multimodal integration strategies are reshaping scene understanding
capabilities. Critical analysis of current limitations—including
Computational efficiency, domain generalization, data imbalance and
interpretability—guides our discussion of emerging research directions.
Foundation models, efficient transformers and zero-shot learning
represent promising avenues for advancing robust, scalable scene
understanding systems applicable to autonomous vehicles, medical
imaging, robotics and intelligent surveillance.
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Introduction

Visual scene understanding encompasses the
Computational ability to parse images at multiple
levels—from detecting
objects and delineating their boundaries to
relationships
contextual interactions [1][2]. Unlike isolated
recognition tasks, holistic scene understanding
requires integrated processing of geometry,
semantics and relational information [3][4]. The
significance of this capability extends across
domains
autonomous navigation systems [5], medical
image analysis [6][7], robotic manipulation [8],
augmented reality [9]and intelligent surveillance

semantic

reasoning about spatial

diverse  application

[10].

The deep learning revolution, initiated by
convolutional neural networks (CNNs),
fundamentally transformed Computer vision
[11][12]. Subsequent innovations in residual
connections, feature pyramid networks and
attention mechanisms progressively improved
detection and segmentation accuracy
[13][14][15]. More recently, transformer
architectures originally developed for natural
language processing have demonstrated
remarkable effectiveness in visual tasks,
enabling global context modeling through self-
attention mechanisms [16][17].

Contemporary research increasingly focuses on
unified frameworks that jointly address multiple
subtasks. Rather than treating detection,
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segmentation and relationship prediction as
independent problems, modern approaches
exploit synergies through shared
representations and multi-task learning
[18][19]. This paradigm shift toward integration
reflects growing recognition that scene
understanding emerges from coordinated
processing of complementary information
sources [20].

In contrast to prior surveys that treat object
detection, segmentation, and relationship
modeling as largely independent topics, this
review emphasizes their integrated role within a
unified scene understanding pipeline. The
analysis systematically aligns architectural
trends, performance metrics, and application
demands across these three tasks, culminating in
a comparative framework that explicitly
connects model properties (mAP, FPS and
parameter counts) to real-time and high-
accuracy deployment scenarios. Furthermore, by
mapping current limitations such as domain
shift, data imbalance and scalability to specific
architectural choices, the review identifies
concrete research gaps that can guide future
model design rather than only summarizing
existing methods.

1. Review methodology

The literature surveyed in this paper was
collected primarily from leading conferences and
journals in computer vision and artificial
intelligence between 2015 and 2025, with
emphasis on works introducing influential
architectures (e.g.,, YOLOv5-v10, DETR variants,
SAM and recent scene graph models). Candidate
papers were identified using keyword queries
related to object detection, segmentation, scene
graphs, and multimodal scene understanding
and then filtered based on citation impact,
reported performance on standard benchmarks
such as COCO and relevance to integrated
pipelines. Quantitative information, including
mAP, FPS and model size, was extracted from
original publications or official repositories
when available and normalized where necessary
to enable fair comparison in the comparative
analysis table. Although the review does not
perform a full statistical meta-analysis, this
structured selection and aggregation process
supports a consistent and transparent synthesis
of recent advances.

Object Detection: Architectural Evolution

Object detection the task of localizing and
classifying  objects  within  images—has
progressed through distinct evolutionary phases.
Two-stage detectors pioneered by R-CNN and
subsequently refined through Fast R-CNN and
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Faster R-CNN established region proposal
networks as effective frameworks [21][22].
These approaches achieve high accuracy by
separating candidate generation from
classification, though at Computational cost.

The YOLO family represents a paradigm shift
toward single-stage, real-time detection [23].
Recent iterations demonstrate continuous
improvement: YOLOv5 introduced flexible
scaling and anchor-free designs [24], YOLOv8
incorporated advanced data augmentation and
optimization strategies [25], while YOLOv10
achieves state-of-the-art performance through
NMS-free  end-to-end training, reducing
inference latency while maintaining accuracy
[26][27]. These advancements enable
deployment on resource-constrained edge
devices, critical for real-world applications.
Transformer-based detection represents
another  breakthrough  direction. = DETR
eliminated hand-crafted components like anchor
boxes through direct set prediction with
bipartite matching [28]. Subsequent refinements
including  Deformable = DETR  addressed
convergence challenges through deformable
attention modules [29]. RT-DETR specifically
targets real-time scenarios by optimizing
encoder-decoder architectures [30]. Despite
higher Computational requirements compared to
YOLO variants, transformers excel at capturing
long-range dependencies and complex spatial
relationships [31][32].

Image Segmentation: From Pixels to
Semantics

Segmentation techniques partition images into
meaningful regions, operating at varying
granularities. Semantic segmentation assigns
class labels to each pixel without differentiating
instances, while instance segmentation
distinguishes individual objects [33][34].
Panoptic segmentation unifies these approaches
by simultaneously producing semantic labels for
background regions and instance identities for
foreground objects [35].

Encoder-decoder architectures dominate
segmentation research. U-Net, originally
developed for biomedical imaging, employs
symmetric skip connections to preserve spatial
information during up-sampling [36]. DeepLab
introduced atrous convolution enabling flexible
receptive field expansion without resolution loss
[37]. Mask R-CNN extended Faster R-CNN
architecture with parallel mask prediction
branches, establishing the standard for instance
segmentation [38].

Foundation models represent a paradigm shift
toward generalizable segmentation. The
Segment Anything Model (SAM) demonstrates
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remarkable zero-shot capabilities through
prompt-based interfaces, enabling adaptation to
novel categories without fine-tuning [39].
Subsequent work including HQ-SAM focuses on
improving mask boundary precision [40], while
SEEM explores multi-granularity prompting for
diverse segmentation tasks [41]. These models
trained on massive datasets exhibit strong
transferability across domains [42].

Integrated Detection and Segmentation

Multi-task learning frameworks that jointly
optimize detection and segmentation
demonstrate superior efficiency and accuracy
compared to independent models [43][44].
Shared feature extraction reduces redundant

Computation while enabling mutual
reinforcement between tasks. Vision
transformers facilitate integration through
flexible token-based processing. ViT-based

models treat image patches as sequences,
applying self-attention to capture relationships
across spatial locations [45]. Hierarchical
variants like Swin Transformer enable multi-
scale reasoning essential for handling objects at
diverse resolutions [46].
Multimodal fusion strategies enrich scene
understanding by incorporating complementary
information sources. Depth sensing provides
geometric cues disambiguating occluded or small
objects [47]. Language embeddings enable open-
vocabulary detection through visual-linguistic
alignment  [48]. Cross-modal  attention
mechanisms learn adaptive fusion weights,
emphasizing relevant modalities based on scene
characteristics  [49]. These  approaches
demonstrate particular value in challenging real-

world conditions  where

methods struggle [50].

single-modality

Relationship Detection and Scene Graphs
Visual relationship detection moves beyond
object-centric analysis to model interactions and
spatial configurations. Scene graphs provide
structured representations encoding objects as
nodes and relationships as directed edges [1][2].
This formalism supports higher-level reasoning
tasks including visual question answering, image
captioning and embodied Al [3].

Early approaches applied message passing over
detected objects. Neural Motifs captured
statistical regularities in relationship co-
occurrence patterns [4]. Iterative Message
Passing (IMP) refined predictions through
recurrent modules propagating contextual
information [5]. Graph convolutional networks
enabled more sophisticated aggregation
schemes, learning edge representations from
node features and graph topology [6][7]. Recent
transformer-based methods leverage self-
attention for flexible relationship modeling

[81[9]-

Comparative Performance Analysis
Systematic comparison reveals distinct trade-
offs among contemporary approaches. Table 1
summarizes representative models evaluated on
COCO dataset [20], the standard benchmark for
detection and segmentation. Performance
metrics include mean Average Precision (mAP),
inference speed in Frames Per Second (FPS),
model complexity measured in parameters and
suitability for real-time deployment.

Table 1: Comparative Performance Analysis of State-of-the-Art Models on COCO Dataset

Model Year Type mAP@0.5:0.95 FPS Params Real-Time
M)
YOLOv5 2020 One-Stage 50.7 140 7.2 Yes
YOLOv8 2023 One-Stage 53.9 80-155 11.2 Yes
YOLOv10 2024 One-Stage 55.4 180+ 6.8 Yes
Faster R-CNN 2017 Two-Stage 42.7 5-7 41.8 No
Mask R-CNN 2017 Two-Stage 44.3 5-7 44.2 No
DETR 2020 Transformer 50.1 28 41.3 Limited
Deformable 2021 Transformer 51.8 19 40.0 Limited
DETR
RT-DETR 2023 Transformer 54.3 108 32.0 Yes
SAM 2023 Foundation N/A 10-15 636 No
HQ-SAM 2023 Foundation N/A 8-12 641 No

The models listed in Table 1 were selected
because they represent widely adopted baselines
or state-of-the-art detectors and segmenters that
are frequently used as reference points in recent
literature (e.g., YOLOv5/8/10, Faster/Mask R-
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CNN, DETR variants and foundation models such
as SAM). Mean Average Precision (mAP) at loU
thresholds from 0.5 to 0.95, frames per second,
and parameter counts were chosen as primary
metrics because they jointly capture accuracy,
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real-time capability and model complexity, which
are critical trade-offs for practical scene
understanding systems deployed on embedded
or cloud platforms. The values reported are taken
from original papers or official implementations
on the COCO benchmark, thereby allowing a fair,
dataset-consistent comparison.

While the table highlights clear performance
gains of newer models such as YOLOv10 and RT-
DETR, it also reveals that improvements in mAP
are often accompanied by increased
architectural complexity and training cost, which
may not translate directly into benefits for all
deployment scenarios. For example, foundation
models like SAM exhibit impressive zero-shot
segmentation capabilities but require orders-of-
magnitude more parameters and computational
resources than  task-specific  detectors,
suggesting that careful cost-benefit analysis is
necessary when choosing models for embedded
or real-time systems.

The comparative analysis reveals several key
insights. YOLOv10 achieves optimal balance for
real-time applications, maintaining  high
accuracy (55.4% mAP) with minimal parameters
(6.8M), representing a 39% reduction compared
to YOLOv8 while improving accuracy by 1.5
percentage points [26][27]. This efficiency stems
from its NMS-free architecture and optimized
backbone design.

Transformer-based models demonstrate
competitive accuracy but exhibit variable real-
time capabilities. DETR and Deformable DETR,
while pioneering in eliminating hand-crafted
components, suffer from lower inference speeds
(19-28 FPS) limiting deployment in time-critical
applications [28][29]. RT-DETR addresses this
limitation through architectural optimizations,
achieving 108 FPS while maintaining 54.3%
mAP, making it viable for real-time scenarios
[30].

Two-stage detectors (Faster R-CNN, Mask R-
CNN) continue to serve specialized applications
prioritizing accuracy over speed. Their slower
inference (5-7 FPS) and higher parameter count
(40+ M) restrict real-time deployment but
remain valuable for offline analysis and high-
precision requirements [21][22][38].
Foundation models like SAM and HQ-SAM
represent a different paradigm, prioritizing
generalizability over speed. With 636-641M
parameters, these models enable zero-shot
segmentation across domains but require
substantial Computational resources, achieving
only 8-15 FPS [39][40]. Their value lies in
versatility rather than real-time performance.
Selection criteria depend on application
constraints. Edge devices and mobile platforms
benefit from lightweight models (YOLOvV10,
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YOLOv5). Autonomous vehicles requiring real-
time processing favor efficient transformers (RT-
DETR) or optimized YOLO variants. Medical
imaging and scientific analysis tolerate slower
speeds for higher accuracy (Faster R-CNN, Mask
R-CNN). Domain adaptation scenarios leverage
foundation models despite Computational
overhead.

Open Challenges and Future Directions
Despite substantial progress, fundamental
challenges remain. Domain generalization
presents persistent obstacles, as models trained
on curated datasets often exhibit performance
degradation = when deployed in novel
environments  [10][11]. Data efficiency
represents another critical concern, with deep
models demanding extensive labeled data costly
to acquire especially for specialized domains
[12][13].

Computational complexity limits practical
deployment. State-of-the-art transformers incur
quadratic complexity with input size, hindering
edge device deployment. Efficient architectures
balancing expressiveness and efficiency remain
essential [14][15]. Long-tail distributions in real-
world visual data exhibit severe imbalance with
rare categories and relationships systematically
underrepresented [16][17].
Future research directions include foundation
models following successes in natural language
processing [18][19], efficient transformers
reducing attention complexity [20][21], unified
frameworks jointly optimizing detection,
segmentation and relationship prediction
[22][23], zero-shot generalization leveraging

vision-language pretraining [24][25]and
explainable representations improving
debugging and enabling human oversight
[26][27].

Beyond technical performance, enhanced scene
understanding systems raise important ethical
and societal concerns. Models trained on large-
scale web or surveillance data can inadvertently
encode and amplify biases related to gender, skin
tone, clothing, or geographic context, which may
lead to unfair treatment in applications such as
public safety monitoring or autonomous driving
in underrepresented regions. The increasing use
of high-resolution detection and segmentation
also exacerbates privacy risks, particularly when
models are deployed in smart cities, workplaces,
or healthcare environments. Future research
should therefore incorporate fairness-aware
training objectives, privacy-preserving
techniques such as federated learning or on-
device inference and transparent reporting of
dataset composition and failure modes so that
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downstream stakeholders can understand and
mitigate potential harms.

Conclusion

Visual scene understanding has advanced
dramatically through architectural innovations
spanning detection, segmentation and relational
reasoning. The YOLO family demonstrates that
real-time accuracy is achievable through careful
architectural design. Transformers enable global
context modeling previously unattainable.
Foundation models suggest paths toward broad
generalization. Integration of these advances
produces systems approaching comprehensive
scene perception.

Yet significant challenges persist. Domain
adaptation, data efficiency, Computational
constraints and interpretability = require
continued attention. Ethical deployment
demands careful consideration of biases and
privacy implications. Future progress depends
on addressing these fundamental issues
alongside architectural refinements. The
ultimate goal—machine vision rivaling biological
perception—remains distant. However, current
trajectories suggest steady progress toward truly
intelligent visual systems.
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