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Abstract

This research addresses the challenge of automated detection and clas-
sification of multiple types of violence from image data using deep learn-
ing techniques. Given the societal importance of timely and accurate vio-
lence recognition, this study explores both custom Convolutional Neural
Network (CNN) architectures and state-of-the-art transfer learning mod-
els pre-trained on ImageNet, including VGG16 and InceptionV3. The da-
taset comprises images across five violence categories—brutality, domes-
tic violence, human trafficking, rape, and sexual harassment—collected
and augmented to enhance model generalizability. Methods involved im-
age preprocessing, data augmentation, and training models with categori-
cal cross-entropy loss optimized via Adam. Transfer learning approaches
outperformed the custom CNN, The models demonstrated varying de-
grees of success in classifying violence image categories. Transfer learning
models, particularly VGG16 and InceptionV3, outperformed the custom
CNN, achieving overall accuracy improvements from approximately 75%
to 76%. These results confirm the effectiveness of leveraging pre-trained
networks for complex image classification tasks with limited datasets.
Class-wise analysis through confusion matrices and derived metrics such
as precision, recall, and F1-score demonstrated varied detection perfor-
mance, highlighting difficulties in differentiating visually similar classes.
The results affirm that leveraging pre-trained deep architectures substan-
tially benefits the classification of limited, complex image datasets. This
paper contributes by providing a comprehensive evaluation of deep
learning approaches for violence classification in images, motivating their
use in practical monitoring and intervention applications. Future work is
suggested to integrate temporal data and attention mechanisms to further
enhance detection performance. The findings underscore the feasibility
and importance of automated violence recognition systems for social safe-

ty.

Introduction

Violence against women has become a critical
social issue worldwide, necessitating effective

detection and monitoring systems to enhance
safety and intervention efforts. Automated vio-
lence recognition technologies have drawn sig-
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nificant attention due to their potential for real-
time surveillance and prevention. The rapid
advancement of computer vision and deep learn-
ing techniques has paved the way for innovative
solutions in this domain. This study investigates
the application of both custom Convolutional
Neural Networks (CNNs) and transfer learning
models to classify multiple categories of violence
from image data. By leveraging pre-trained ar-
chitectures alongside carefully curated datasets,
this research aims to deliver robust, accurate
detection models capable of operating in com-
plex, real-world settings.

The objectives of this paper include presenting a
detailed evaluation of violence classification
approaches, highlighting the comparative per-
formance of various deep learning models, and
discussing the challenges associated with image-
based violence recognition. The research con-
tributes valuable insights for designing practical
systems aimed at safeguarding communities
through intelligent visual analysis.

References to previous foundational work and
state-of-the-art techniques are integrated
throughout the methodology and literature re-
view sections to establish a comprehensive
knowledge base for the study.

Literature Review

The task of violence detection from images has
seen substantial advancements over recent
years, driven primarily by the rise of deep learn-
ing methods. Earlier approaches predominantly
relied on handcrafted features and classical ma-
chine learning algorithms, but these struggled to
generalize due to the complex, varied nature of
violent imagery. The advent of Convolutional
Neural Networks (CNNs) revolutionized the field
by enabling automated hierarchical feature
learning directly from pixel data, significantly
improving detection accuracy.

Transfer learning has become particularly prom-
inent in this domain, as training deep networks
from scratch requires large labeled datasets,
which are scarce for violence categories. Using
pre-trained models such as VGG16, InceptionV3,
MobileNetV2, and ResNet50, originally trained
on vast datasets like ImageNet, facilitates ex-
tracting robust visual representations. These
models can be fine-tuned on violence-specific
datasets, resulting in quicker convergence and
enhanced performance. Prior studies have
demonstrated that transfer learning yields bet-
ter classification accuracy and robustness com-
pared to CNNs trained solely on limited violence
data.

Data augmentation techniques, including rota-
tions, translations, flips, and zooms, have been
extensively employed to artificially expand da-
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taset diversity, further enhancing model general-
izability and reducing over fitting. Despite these
improvements, classifying nuanced types of vio-
lence remains challenging due to inter-class
visual similarities and context dependence.

This work builds on such prior research by sys-
tematically evaluating both custom CNN archi-
tectures and multiple transfer learning models
on a diverse multi-class violence image dataset.
The comparative analysis adds valuable insights
into the relative effectiveness of different deep
learning strategies for automated violence
recognition, a crucial step toward developing
reliable real-time monitoring solutions for social
safety.

Methodology
Types of women’s violence detection (WVD)

Women’s Violence Type Image Details

DatasetT ype

Domestic

Child "
molastation

Emotional
Molestation

Gendar Based
Violence

Dhysical
Violence

Data Collection and Preprocessing

The dataset used in this study consists of images
categorized into five types of violence: brutality,
domestic violence, human trafficking, rape, and
sexual harassment. Images were collected from
diverse sources and then augmented using tech-
niques such as rotation, flipping, and zooming to
increase the dataset size and variability, thereby
enhancing the model's generalization ability.
Preprocessing steps included resizing images to
a uniform dimension compatible with model
input layers, normalization to standardize pixel
value ranges, and data splitting into training,
validation, and test sets to evaluate model per-
formance effectively.
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Model Architectures

Two main approaches were explored: a custom-
designed Convolutional Neural Network (CNN)
and transfer learning models pre-trained on the
ImageNet dataset, including VGG16 and Incep-
tionV3.

The custom CNN comprised multiple convolu-
tional layers with ReLU activations, followed by
max pooling layers and fully connected dense
layers, optimized to capture feature hierarchies
specific to violence detection.

Transfer learning models retained pre-trained
weights and fine-tuned several top layers on the
violence dataset to adapt the models’ learned
features to the new task, aiming to benefit from
prior general image representations.

Training Protocol

Models were trained using the categorical cross-
entropy loss function and the Adam optimizer,
with mini-batch stochastic gradient descent.
Hyper parameters such as learning rate, batch
size, and number of epochs were carefully se-
lected via grid search and validation set perfor-
mance to maximize accuracy while preventing
over fitting. Regularization methods like dropout
and early stopping were employed to further
reduce over fitting risks.

Evaluation Metrics

Model performance was assessed using accura-
cy, precision, recall, and F1-score metrics, calcu-
lated per class to understand classification effi-
cacy across violence categories. Confusion ma-
trices were analyzed to identify common mis-
classifications and guide model improvement
strategies.
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Results and Discussion

The models demonstrated varying degrees of
success in classifying violence image categories.
Transfer learning models, particularly VGG16
and InceptionV3, outperformed the custom CNN,
achieving overall accuracy improvements from
approximately 75% to 76%. These results con-
firm the effectiveness of leveraging pre-trained
networks for complex image classification tasks
with limited datasets.

Class-wise analysis showed that some catego-
ries, such as brutality and domestic violence,
were detected with higher precision and recall,
while others, like human trafficking and sexual
harassment, posed challenges due to visual simi-
larities and subtle contextual cues. Confusion
matrices revealed common misclassifications
that guide potential improvements in data col-
lection and model design.
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Precision, recall, and F1-score metrics for each
class were calculated, revealing that transfer
learning models provided more balanced per-
formance across classes compared to the custom
CNN. These findings suggest that fine-tuning
robust pre-trained architectures is beneficial for
practical applications demanding reliable recog-
nition of nuanced violence types.The discussion
highlights the importance of dataset diversity
and augmentation strategies, as well as the po-
tential role of integrating temporal and atten-
tion-based mechanisms in future research to
further enhance detection capabilities.

A true positive (TP) is the total number of cor-
rectly detected positive occurrences. True nega-
tive (TN), false positive (FP), and false negative
(FN) denote the ratios of accurately detected
positive and negative instances in relation to the
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occurrences of false positives and false negatives

compared to the ground truth.
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Sr.No. |[Framework Precision Recall F1-Score Accuracy
1 CNN 0.699257 0.6958737  [0.6964532  |0.6956522
2 [nceptionV3 0.790603 0.7984738  [0.7925406  |0.7902893
3 MobileNetV2  |0.74993 0.749671 0.7489774  (0.7492477
4 ResNet50 0.7277713 0.7243493  |0.725253 0.7254098
5 VGG16 0.8412941 0.8403226  |0.8400217  (0.8405037
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Fig.3. Comparative results for VGG16
Conclusion Recognition,” IEEE Transactions on Pattern

This study presents a comprehensive evaluation
of deep learning approaches for automated vio-
lence classification in images. The results
demonstrate that transfer learning models such
as VGG16 and InceptionV3 outperform custom-
designed CNN architectures, providing better
accuracy and more balanced class-wise perfor-
mance. Leveraging pre-trained networks ena-
bles effective feature extraction even with lim-
ited and complex datasets.

The challenges of visual similarity between cer-
tain violence categories indicate the need for
enhanced data diversity and potential integra-
tion of temporal and attention-based methods,
which are promising directions for future re-
search. The findings underscore the importance
and feasibility of automated violence detection
systems for societal safety applications, high-
lighting deep learning as a critical enabler for
real-world monitoring and intervention tech-
nologies.
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