International Journal on Advanced Computer Theory and Engineering

_—
7l

Archives available at journals.mriindia.com

International Journal on Advanced Computer Theory and
Engineering
ISSN: 2319 - 2526
Volume 15 Issue 01s, 2026

Automated Detection and Classification of Parkinson's Disease Using
Electroencephalography: A Review

IMr. Nitin Laxman Ahire, 2Dr. Surendra P. Ramteke

1Research Scholar, Dept. of Electronics Engineering, SSBT College of Engineering and Technology, Bambhori,
North Maharashtra University, Jalgaon, Maharashtra, India

Assistant Professor, Dept. of E&TC Engineering, MET’s IOE Nashik.

2Associate Professor, Dept. of Computer Engineering, SSBT College of Engineering and Technology, Bambhori
North Maharashtra University, Jalgaon, Maharashtra, India

Email: 'nitinlahire@gmail.com, 2surendrapramteke@gmail.com

Peer Review Information

Submission: 08 Dec 2025
Revision: 25 Dec 2025
Acceptance: 10 Jan 2026

Keywords

EEG, Machine Learning (ML),
Deep Learning (DL),
Parkinson’s Disease (PD)

Abstract

In this review paper we have discuss in depth knowledge of Parkinson's
disease (PD) is a progressive neurodegenerative condition with a variety
of motor and non-motor symptoms, early and precise diagnosis is
essential for successful treatment. A prospective route for the automated
identification of neurological disorders like Parkinson's disease (PD) is
electroencephalography (EEG), a non-invasive and economical technique
for examining brain activity. The state-of-the-art in automated PD
detection and classification using EEG data is examined in this study, with
afocus on developments in deep learning (DL) and machine learning (ML)
techniques for improved diagnostic precision. In particular, it looks at a
variety of signal processing approaches, feature extraction strategies, and
how well different classification algorithms distinguish PD patients from
healthy controls. The potential of EEG-based biomarkers for monitoring
the course of a disease and the effectiveness of treatment is also covered
in the article, opening the door to tailored therapeutic interventions. By
combining current research to identify areas for innovation in automated
EEG analysis, the main objective is to present a thorough overview of
current obstacles and future prospects in utilising EEG for early and
reliable PD diagnosis and monitoring.

Introduction

The critical need for objective and early

The second most common neurological disease in
the world, Parkinson's disease usually affects
those over 65 [1]. Degeneration of dopaminergic
neurones in the substantia nigra pars compacta
causes this degenerative disorder, which
manifests as cardinal motor symptoms like
stiffness, shaking hands, and problems with
balance and coordination [2], [3]. Non-motor
symptoms of Parkinson's disease (PD) include
cognitive impairment and sleep difficulties,
which frequently occur before motor onset and
greatly lower quality of life [4].

© 2026 The Authors. Published by MRI INDIA.

biomarkers is highlighted by the fact that current
diagnostic techniques mostly rely on clinical
observation of motor symptoms, which typically
manifest after significant neuronal loss has
already happened [1].

A promising non-invasive method for identifying
neurological abnormalities linked to Parkinson's
disease (PD), possibly even in its prodromal
phases, is electroencephalography [5]. When
compared to other neuroimaging methods, EEG
is a very inexpensive modality with good
temporal resolution, making it appropriate for
broad clinical use [2].
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Fig. 1. General block diagram for Parkinson's Disease Detection using EEG Signals

The proposed system for Parkinson's Disease
(PD) detection leverages
electroencephalography (EEG) data to identify
characteristic biomarkers. As depicted in the
figure 1, the initial stage involves EEG data
acquisition, capturing brain activity signals from
the patient. This raw data then undergoes a
crucial preprocessing phase to remove noise and
artifacts, ensuring the integrity of the signals for
subsequent analysis. Following preprocessing,
various feature extraction techniques are applied
to derive meaningful patterns and insights from
the EEG signals, ultimately leading to the
detection of Parkinson's Disease.

A new method for the automated identification
and categorisation of Parkinson's disease (PD) is
provided by the combination of artificial
intelligence and EEG data, which may overcome
the drawbacks of subjective clinical evaluations
and allow for earlier intervention [6], [7].
Despite the fact that the intrinsic complexity of
EEG signals requires sophisticated analytical
methods, including machine learning and deep
learning, to reliably identify minor abnormal
patterns suggestive of Parkinson's disease [4],
[5]. The present state of automated PD
identification and categorisation using EEG is
thoroughly reviewed in this work, with an
emphasis on the techniques, algorithms, and
relative effectiveness of different approaches.

Literature Review

Research on automated Parkinson's disease (PD)
identification from EEG data has evolved from
conventional machine learning to advanced deep
learning architectures, frequently using mixed
approaches for improved diagnostics [8].

This paper investigates the application of EEG
microstate analysis as a technique to investigate
rapidly evolving brain network dynamics in
Parkinson's disease (PD). The work outlines a
typical methodological pipeline that includes
feature extraction, microstate sequence fitting, k-
means clustering, GFP peak extraction, and
preprocessing. It emphasises how changes in
microstate duration, transition frequency, and
temporal variability are associated with cognitive
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and motor impairment in Parkinson's disease
patients. The work highlights the potential use of
microstates as biomarkers for early diagnosis,
tracking progression, and assessing the efficacy
of treatment. However, it highlights significant
issues such uneven clustering techniques, a lack
of standardisation in preprocessing, and poor
reproducibility between investigations. The
research highlights the necessity of conducting
extensive validation studies and using
explainable Al techniques for clinical use
furthermore, the author finds the research gap of
absence of standardized microstate protocols;
limited multi-center validation; lack of PD-
specific normative microstate databases. [9].

In this study, a deep learning method based on
time-frequency pictures obtained from cleaned
EEG data is proposed for early Parkinson's
disease identification. EEG data from the Iowa
dataset were transformed into ERSP-based time-
frequency pictures after being pre-processed to
eliminate artefacts. An accuracy of 94.64% was
attained in the classification of PD sufferers from
healthy subjects using a customised CNN model.
The approach shows that deep models can
extract high-level temporal-spectral patterns
associated with Parkinson's disease (PD) and are
resistant against noise. The work is constrained
by a comparatively small dataset of 33 PD
patients and possible overfitting as a result of
subject reliance, despite its promising findings.
Research shortcomings include the small dataset
size, lack of cross-dataset testing, lack of
comparison with traditional EEG biomarkers,
and lack of subject-independent validation [10].

This comprehensive review examines 342
research publications on MRI, gait analysis,
handwriting, speech, EEG, and multimodal fusion
techniques to PD identification. It emphasises the
change from handmade characteristics to deep
learning models, as well as the significance of
multimodal systems for accurate diagnosis. The
authors include thorough benchmark dataset
tables, preprocessing methods, and performance
trends across modalities. They note that most
previous research is unimodal, which limits
practical usefulness in situations where



International Journal on Advanced Computer Theory and Engineering

multimodal cues are required. The review also
addresses issues such as data heterogeneity,
model generalisation, a lack of real-time systems,
and insufficient evaluation of varied populations.
Research deficiencies include insufficient
multimodal datasets, a lack of real-time PD
monitoring equipment, poor model
generalisation, and few investigations on
continuous PD severity evaluation [11].

The UC San Diego and lowa EEG datasets are used
in this study to assess both ML and DL models for
PD identification. Using SVM as a baseline
classifier, the authors extract power spectral
characteristics from five EEG bands (q, 3, 6, y, and
§) and achieve 82-94% accuracy in subject-
dependent tests. After that, a CNN model is
applied to multi-dimensional spectral data, and
because it can capture cross-frequency
relationships, its accuracy exceeds 96-99%. The
study shows that when it comes to EEG-based
Parkinson's disease identification, deep learning
outperforms classical machine learning. Subject-
independent accuracy, however, decreases to
68%, suggesting inadequate generalisation to
new subjects. Research shortcomings include the
lack of multimodal EEG + clinical characteristics,
minimal dataset diversity, lack of cross-session
generalisation, and lack of real-time testing [12].
This paper discusses ML/DL methods for PD
monitoring and detection using speech, gait,
imaging, handwriting, and EEG data. The authors
compare a number of algorithms, including CNN,
RF, SVM, and RNN, emphasising that deep models
and multimodal fusion have reached >99%
accuracy in many trials. They also talk about
datasets that are accessible to the public and
stress how preprocessing can enhance PD
detection performance. The review highlights the
necessity for explainable Al to maintain clinician
trust, but it also finds great promise for Al-based
early diagnosis. Problems including privacy
concerns, small datasets, inconsistent data
collection, and the absence of standardised
procedures are also emphasised.
Research gaps include the requirement for large
multi-center datasets, the inability of deep
models to be explained, worries about data
privacy, and the paucity of work on cross-
modality feature fusion [13].

Background of Parkinson's Disease
1. Early Parkinson's Disease
Techniques:

Timely intervention depends on an early and
precise diagnosis of Parkinson's disease [15].
Conventional diagnosis relies on motor
symptoms that emerge during severe

Detection
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neurodegeneration [1]. Because it is non-invasive
and can show small changes in neurophysiology,
EEG is a viable alternative for early detection [1],
[14].

By examining intricate patterns in brain electrical
activity, machine learning approaches applied to
EEG data have the potential to distinguish
Parkinson's disease (PD) patients from healthy
controls [15], frequently using convolutional
neural networks or higher-order spectral
features [16].

The possibility of gender bias in machine
learning models for Parkinson's disease (PD) is
an important factor to take into account. To
guarantee model generalisability and
transferability, gender-specific patterns and
biomarkers must be included [15], [17].

2. EEG-Based Feature Extraction Techniques
The careful extraction of specific characteristics
that capture the neurophysiological anomalies of
Parkinson's disease (PD) is essential for
successful ML implementation. These methods
consist of:

e Time-domain and Frequency-domain
analyses: To evaluate oscillatory activity
and functional coupling, characteristics
including power spectral density
components, band power ratios, and
coherence measurements are frequently
employed [18].

e Complex Signal Processing: To detect
and improve particular oscillatory
patterns and reduce artefacts that can
distort model performance, methods such
as Independent Component Analysis (ICA)
and wavelet transforms are used [17],

[19].
e Nonlinear and connectivity-based
metrics: These  provide  distinct

perspectives on the intricate dynamics of

brain activity [20].
The lack of high-quality biomedical data,
particularly for Parkinson's disease (PD), and the
diversity of feature extraction techniques are
major obstacles [1], [21]. Using information from
models trained on larger, related datasets,
transfer learning is frequently used to overcome
data scarcity.
This Table 1 illustrates the end-to-end process of
developing an Al-based system for PD
classification, highlighting the split between
traditional machine learning (ML) and modern
deep learning (DL) approaches.
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Table 1. General Workflow for Automated PD Detection Using EEG

Stage Process Traditional ML Path Deep Learning (DL) Path
I. Data Acquisition Recording raw EEG | Raw EEG Time Series Raw EEG Time Series
signals (Resting-state
or Task-state) using
the International 10-
20 system.
I1. Preprocessing Filtering, Artifact | Cleaned EEG Epochs Cleaned EEG Epochs or
Removal (ICa), Spectrograms
Segmentation,
Epoching.
IL. Feature | Manually calculate | Feature Engineering: | Feature Learning: CNNs,
Extraction/Learning | quantitative Extract Frequency (PSD, | LSTMs, or Hybrid
biomarkers. Ratios), Nonlinear | Networks automatically
(Entropy,  Complexity), | learn hierarchical
and Connectivity | features from the input
(Coherence, PLV) | data (end-to-end).
Features.
IV. Classification Train a classifier on | Model Training: SVM, | Model Training: CNN,
the feature vector. Random Forest, k-NN, | RNN/LSTM, CRNN
XGBoost. (CNN+LSTM), GCN.
V. Output Diagnostic prediction | Classification: PD  vs. | Classification: PD vs. HC,
and confidence score. | Healthy Control (HC) Subtyping (e.g, Tremor
vs. PIGD)

3. Machine Learning and Deep Learning
Approaches for Classification

In order to classify PD automatically and
accurately, complex machine learning and deep
learning models must be applied to the retrieved
data.

e Traditional ML: When combined with
efficient feature engineering, algorithms like
Support Vector Machines (SVMs), Multi-Layer
Perceptron’s (MLPs), and K-nearest neighbours
(KNNs) have demonstrated great precision and
accuracy [7], [22], [23].

e Deep Learning (DL): By removing the need
for manual feature extraction and enabling end-
to-end learning from raw or little pre-processed
EEG data, DL has completely transformed in the
field of neuroscience [2]. Improved diagnostic
accuracy can result from models like
Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) (e.g., LSTMs)
that can automatically learn complex patterns

[6]-

e Hybrid Models: One suggested
Convolutional-Recurrent Neural Network
(CRNN) model achieved accuracy in

classification, demonstrating the remarkable
promise of architectures that combine CNNs for
spatial feature learning and RNNs for temporal
dependency learning [2], [20], [22].
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o Explainable AI (XAI): By offering clear
insights into the models' decision-making
processes, integrating XAI approaches is
essential for developing clinical trust and
facilitating a deeper comprehension of the
neurological roots of Parkinson's disease [2],
[24].

Methodology

In order to maximise diagnostic accuracy and
model interpretability, the reviewed approaches
frequently combine advanced signal processing
with hybrid deep learning architectures [9]. This
methodology employs a multi-stage procedure
that includes data acquisition, preprocessing,
feature extraction, and a classification
framework.

1. EEG Data Acquisition and Preprocessing
Using the standardised 10-20 international
electrode placement technique, the first step
entails capturing resting-state EEG signals from
both PD patients and healthy controls [2]. A
minimum sampling rate of 250 Hz is frequently

used during recordings. The following
preprocessing stages consist of:
e Denoising and Artifact Rejection:

Applying methods such as independent
component analysis (ICA).
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o Filtering: Utilising band-pass filtering to
improve the signal-to-noise ratio and
identify relevant frequency ranges.

¢ Segmentation: Fixed-duration epochs are
created by segmenting filtered signals.

To evaluate the effects of dopaminergic therapy
and find reliable biomarkers, recordings of PD

patients are frequently made when they are both
on and off medication [2].

The table 2 summarizes the most commonly
reported neurophysiological alterations in PD
patients that serve as quantitative biomarkers for
automated classification models.

Table 2. Summary of Key EEG Biomarkers for Parkinson's Disease Classification

Feature Specific Biomarker Typical Finding in PD vs. | Neurophysiological Relevance
Domain HC
Frequency Beta Band | Increased/Excessive Pathological coupling in the
Domain Power/Coherence (13-30 | Synchronization cortico-basal ganglia loop;
Hz) strongly  correlated  with
rigidity and bradykinesia.
Frequency Delta & Theta Power (0.5- | Increased Power | Non-specific sign of cerebral
Domain 8 Hz) (Generalized Slowing) dysfunction; often linked to
cognitive impairment and
disease severity.
Nonlinear Approximate/Sample Decreased Reduced complexity and loss of
Dynamics Entropy adaptability in cortical
dynamics; indicates a more
rigid, predictable brain state.
Nonlinear Higher-Order Spectral | Altered Patterns/Values | Reveals non-linear (quadratic)
Dynamics (HOS) Features (e.g, phase  coupling  between
Bispectrum Entropy) different frequency
components, often affected by
dopamine depletion.
Functional Phase-Locking Value | Altered/Excessive Disrupted information flow and
Connectivity | (PLV) or Coherence Coupling (especially in | functional network
Beta band) organization between spatially
separated brain regions.

2. Feature Extraction and Selection

In order to distinguish between PD individuals,
this procedure extracts significant quantitative
descriptors from the pre-processed data [1], [2].
A wide range of features must be calculated:

o Statistical Moments and Spectral
Power: Power across various frequency
bands [3], [22], [25].

o Connectivity Measures and Non-linear
Dynamics: utilising cutting-edge
techniques to find non-linear coupling
information, such as higher-order spectral

analysis, particularly bi-spectrum,
cumulant, and lag vectors [1], [8], [22].
o Feature Selection: Techniques like

univariate statistical analysis are applied
to identify the most salient features,
optimizing model performance and
interpretability [2], [14], [22].

3. Classification Algorithms

The preferred classification algorithms leverage
these selected features, with a strong emphasis
on deep learning:
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e Deep Learning Architectures: CNNs and
RNNs are prime candidates for their ability to
process sequential EEG data and extract
hierarchical features [1], [26]. A convolutional-
recurrent neural network model, for instance,
has shown promise by combining CNN strengths
for spatial feature extraction and RNN strengths
for temporal dependency learning [2].

e Transfer Learning: Application of models
pre-trained on large biomedical datasets can
enhance generalizability, especially given the
limited PD-specific EEG data [2], [22].

o Baseline Models: SVMs and KNNs are widely
employed as baseline ML algorithms [2].

Model robustness and generalizability are
ensured by rigorous performance evaluation that
uses metrics like accuracy, sensitivity, specificity,
precision, Fl-score, and Area Under the ROC
Curve (AUC), as well as cross-validation
techniques like k-fold validation [22], [27].

The dataset-related research gaps found in recent
EEG-based Parkinson's disease investigations are
summarised in Table 3. It draws attention to
important drawbacks such small sample sizes,
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limited channel configurations, a lack of multi-
center validation, and a lack of publicly accessible
datasets. These omissions seriously impair the

reproducibility and generalisability of the model,

Table 3. Summary of Research Gap Related to Dataset

highlighting the critical need for large-scale,
diverse, standardised EEG datasets for future
studies.

Author(s) | Year | Journal Methodology / | Dataset Used | Research Gap
Technique Used Related to Dataset
A. M. Maitin | 2020 | Applied Sciences | ML Approaches for | Multiple small | Lack of unified
etal. [1] PD Detection, | EEG datasets | dataset;
Feature Extraction + | (varied heterogeneous
Classification sources) protocols; small
sample sizes
Shraddha 2023 | Research Square | Review of EEG | Not specific | No standardized or
Jain [8] biomarkers for | (general large-scale PD-
neurological review of EEG | specific dataset
disorders datasets)
S. Lee et al. | 2019 | Neuroscience Deep CNN for EEG- | Local hospital | Limited participants;
[2] Journal based PD detection | dataset no external
validation
J. P. Romero | 2019 | MDPI Connectivity Public PD EEG | Dataset lacks early
etal. [5] analysis, spectral | (small sample) | PD subjects; low
features geographical
diversity
R. Hussein | 2018 | Expert Systems | Wavelet + SVM Self-collected Very small n (<30),
etal. [4] with EEG limits ML accuracy
Applications
U. R. | 2017 | Neural Entropy features + | University- No standardized
Acharya et Computing and | ML collected EEG | motor-task protocol
al. [7] Applications signals
Springer
M. J. Wang | 2019 | Nature Sci | Deep learning + | Proprietary Inaccessible dataset;
et al. Reports time-frequency clinical dataset | limited
features reproducibility
S.T.Lopes | 2021 | Frontiers in | Graph-theory brain | Public resting- | Dataset small and
Neuroscience connectivity state PD EEG restricted to resting-
markers state only
Z.]. Wang 2018 | Medical Spectral slowing | Hospital EEG | Only medicated PD
Engineering & | analysis dataset subjects; no
Physics comparison with
unmedicated

Technical and Ethical Challenges

1. Technical Challenges

1. Low Signal-to-Noise Ratio (SNR): EEG

signals are inherently noisy due to
artifacts from muscle movement, blinking,
and external interference.

. Inter-Subject and Intra-Subject
Variability: EEG patterns vary widely
between individuals and even within the
same subject over time, reducing model
generalizability.

. High-Dimensional EEG Data:
Multichannel recordings with high
sampling frequencies create large
datasets, requiring effective feature

extraction or dimensionality reduction.

4. Non-Stationarity of EEG Signals: EEG
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. Lack of

signals change rapidly over time, making it
challenging to build stable and reliable
detection models.

Unified Preprocessing
Standards: Different studies use different
filtering, artifact removal, and
normalization strategies, affecting
reproducibility.

. Limited Size and Diversity of Public

Datasets: Many EEG datasets have small
sample sizes, limiting deep learning model
performance.

. Challenges in Real-Time Processing:

Real-time PD detection systems require
low-latency algorithms, which remain
difficult with computationally heavy
models.
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8. Feature Selection Complexity:
Identifying disease-specific EEG
biomarkers (like spectral slowing, reduced
complexity, altered connectivity) remains

challenging.
2. Ethical Challenges
1. Data Privacy and Patient Consent: EEG
data contains sensitive neurological

information; improper handling raises
privacy concerns.

2. Bias and Inequity in Datasets: Many
datasets lack demographic diversity,
leading to biased Al models that perform
poorly on underrepresented groups.

3. Transparency and Explainability: Black-
box deep learning models make clinical
adoption difficult due to lack of
interpretability.

4. Clinical Reliability and Misdiagnosis
Risk: False positives/negatives may lead
to incorrect treatment decisions.

5. Data Security in Cloud-Based EEG
Systems: Remote EEG monitoring
increases the risk of data breaches.

6. Ethical Use in Continuous Monitoring:
Persistent = neuro-monitoring raises
concerns of surveillance and autonomy.

3. Identified Research Gaps

1. Insufficient Large-Scale Parkinson’s
EEG Datasets: Most studies rely on small
patient cohorts, reducing model
generalization power.

2. Lack of Standardized EEG Protocols:
Differences in electrode placement,
sampling rates, and recording tasks make
cross-study comparison difficult.

3. Underexplored Deep Learning
Approaches: While CNNs/LSTMs are
used, advanced models like transformers,

GNNs, or hybrid models remain
underutilized.
4. Limited Multimodal Integration:

Combining EEG with gait analysis, speech,
handwriting, or MRI is still rare.

5. Weak Validation on External Datasets:
Few studies test models across multiple
datasets to ensure robustness.

Conclusion

This  systematic review validates the
considerable potential of machine learning and
deep learning techniques in the automated
identification and categorization of Parkinson's
Disease through EEG. The most encouraging
outcomes arise from hybrid deep learning
models that effectively capture the spatial and
temporal characteristics of EEG signals, with
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architectures such as the CRNN attaining
impressive  diagnostic  accuracy. Feature
engineering, especially through the use of higher-
order spectrum properties, is essential for
enhancing model accuracy.

Despite these advancements, several critical
challenges persist that limit clinical translation:

¢ Generalizability and Robustness: High
inter-subject variability in EEG data and a
lack of standardized acquisition protocols
across studies hinder the development of
universal diagnostic criteria.

e Data Scarcity and Diversity: There is a
critical need for more extensive, diverse,
and meticulously annotated datasets to
enhance the robustness and
generalizability of diagnostic models.

e Model Interpretability: The "black-box"
nature of complex Al models is a barrier to
clinical acceptance, underscoring the
necessity for Explainable Al (XAI)
techniques to foster clinician trust and
provide insights into neural mechanisms.

Future research must prioritize developing
standardized, large-scale, multi-center datasets
and explore multimodal data fusion (combining
EEG with genetic, imaging, and clinical data) to
yield a more comprehensive understanding and
improve diagnostic and prognostic capabilities.
Ultimately, integrating  these  advanced,
explainable Al models with real-time monitoring
holds the promise for a more proactive and
comprehensive approach to PD diagnosis and
personalized treatment strategies.
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