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Abstract 

In this review paper we have discuss in depth knowledge of Parkinson's 
disease (PD) is a progressive neurodegenerative condition with a variety 
of motor and non-motor symptoms, early and precise diagnosis is 
essential for successful treatment. A prospective route for the automated 
identification of neurological disorders like Parkinson's disease (PD) is 
electroencephalography (EEG), a non-invasive and economical technique 
for examining brain activity. The state-of-the-art in automated PD 
detection and classification using EEG data is examined in this study, with 
a focus on developments in deep learning (DL) and machine learning (ML) 
techniques for improved diagnostic precision. In particular, it looks at a 
variety of signal processing approaches, feature extraction strategies, and 
how well different classification algorithms distinguish PD patients from 
healthy controls. The potential of EEG-based biomarkers for monitoring 
the course of a disease and the effectiveness of treatment is also covered 
in the article, opening the door to tailored therapeutic interventions. By 
combining current research to identify areas for innovation in automated 
EEG analysis, the main objective is to present a thorough overview of 
current obstacles and future prospects in utilising EEG for early and 
reliable PD diagnosis and monitoring. 
 

 
Introduction 
The second most common neurological disease in 
the world, Parkinson's disease usually affects 
those over 65 [1]. Degeneration of dopaminergic 
neurones in the substantia nigra pars compacta 
causes this degenerative disorder, which 
manifests as cardinal motor symptoms like 
stiffness, shaking hands, and problems with 
balance and coordination [2], [3]. Non-motor 
symptoms of Parkinson's disease (PD) include 
cognitive impairment and sleep difficulties, 
which frequently occur before motor onset and 
greatly lower quality of life [4]. 

The critical need for objective and early 
biomarkers is highlighted by the fact that current 
diagnostic techniques mostly rely on clinical 
observation of motor symptoms, which typically 
manifest after significant neuronal loss has 
already happened [1].  
A promising non-invasive method for identifying 
neurological abnormalities linked to Parkinson's 
disease (PD), possibly even in its prodromal 
phases, is electroencephalography [5]. When 
compared to other neuroimaging methods, EEG 
is a very inexpensive modality with good 
temporal resolution, making it appropriate for 
broad clinical use [2]. 
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Fig. 1. General block diagram for Parkinson's Disease Detection using EEG Signals 

 
The proposed system for Parkinson's Disease 
(PD) detection leverages 
electroencephalography (EEG) data to identify 
characteristic biomarkers. As depicted in the 
figure 1, the initial stage involves EEG data 
acquisition, capturing brain activity signals from 
the patient. This raw data then undergoes a 
crucial preprocessing phase to remove noise and 
artifacts, ensuring the integrity of the signals for 
subsequent analysis. Following preprocessing, 
various feature extraction techniques are applied 
to derive meaningful patterns and insights from 
the EEG signals, ultimately leading to the 
detection of Parkinson's Disease. 
A new method for the automated identification 
and categorisation of Parkinson's disease (PD) is 
provided by the combination of artificial 
intelligence and EEG data, which may overcome 
the drawbacks of subjective clinical evaluations 
and allow for earlier intervention [6], [7]. 
Despite the fact that the intrinsic complexity of 
EEG signals requires sophisticated analytical 
methods, including machine learning and deep 
learning, to reliably identify minor abnormal 
patterns suggestive of Parkinson's disease [4], 
[5]. The present state of automated PD 
identification and categorisation using EEG is 
thoroughly reviewed in this work, with an 
emphasis on the techniques, algorithms, and 
relative effectiveness of different approaches. 
 
Literature Review 
Research on automated Parkinson's disease (PD) 
identification from EEG data has evolved from 
conventional machine learning to advanced deep 
learning architectures, frequently using mixed 
approaches for improved diagnostics [8]. 
This paper investigates the application of EEG 
microstate analysis as a technique to investigate 
rapidly evolving brain network dynamics in 
Parkinson's disease (PD). The work outlines a 
typical methodological pipeline that includes 
feature extraction, microstate sequence fitting, k-
means clustering, GFP peak extraction, and 
preprocessing. It emphasises how changes in 
microstate duration, transition frequency, and 
temporal variability are associated with cognitive 

and motor impairment in Parkinson's disease 
patients. The work highlights the potential use of 
microstates as biomarkers for early diagnosis, 
tracking progression, and assessing the efficacy 
of treatment. However, it highlights significant 
issues such uneven clustering techniques, a lack 
of standardisation in preprocessing, and poor 
reproducibility between investigations. The 
research highlights the necessity of conducting 
extensive validation studies and using 
explainable AI techniques for clinical use 
furthermore, the author finds the research gap of 
absence of standardized microstate protocols; 
limited multi-center validation; lack of PD-
specific normative microstate databases. [9]. 
In this study, a deep learning method based on 
time-frequency pictures obtained from cleaned 
EEG data is proposed for early Parkinson's 
disease identification. EEG data from the Iowa 
dataset were transformed into ERSP-based time-
frequency pictures after being pre-processed to 
eliminate artefacts. An accuracy of 94.64% was 
attained in the classification of PD sufferers from 
healthy subjects using a customised CNN model. 
The approach shows that deep models can 
extract high-level temporal-spectral patterns 
associated with Parkinson's disease (PD) and are 
resistant against noise. The work is constrained 
by a comparatively small dataset of 33 PD 
patients and possible overfitting as a result of 
subject reliance, despite its promising findings. 
Research shortcomings include the small dataset 
size, lack of cross-dataset testing, lack of 
comparison with traditional EEG biomarkers, 
and lack of subject-independent validation [10]. 
This comprehensive review examines 342 
research publications on MRI, gait analysis, 
handwriting, speech, EEG, and multimodal fusion 
techniques to PD identification. It emphasises the 
change from handmade characteristics to deep 
learning models, as well as the significance of 
multimodal systems for accurate diagnosis. The 
authors include thorough benchmark dataset 
tables, preprocessing methods, and performance 
trends across modalities. They note that most 
previous research is unimodal, which limits 
practical usefulness in situations where 
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multimodal cues are required. The review also 
addresses issues such as data heterogeneity, 
model generalisation, a lack of real-time systems, 
and insufficient evaluation of varied populations. 
Research deficiencies include insufficient 
multimodal datasets, a lack of real-time PD 
monitoring equipment, poor model 
generalisation, and few investigations on 
continuous PD severity evaluation [11]. 
The UC San Diego and Iowa EEG datasets are used 
in this study to assess both ML and DL models for 
PD identification. Using SVM as a baseline 
classifier, the authors extract power spectral 
characteristics from five EEG bands (α, β, θ, γ, and 
δ) and achieve 82–94% accuracy in subject-
dependent tests. After that, a CNN model is 
applied to multi-dimensional spectral data, and 
because it can capture cross-frequency 
relationships, its accuracy exceeds 96–99%. The 
study shows that when it comes to EEG-based 
Parkinson's disease identification, deep learning 
outperforms classical machine learning. Subject-
independent accuracy, however, decreases to 
68%, suggesting inadequate generalisation to 
new subjects. Research shortcomings include the 
lack of multimodal EEG + clinical characteristics, 
minimal dataset diversity, lack of cross-session 
generalisation, and lack of real-time testing [12]. 
This paper discusses ML/DL methods for PD 
monitoring and detection using speech, gait, 
imaging, handwriting, and EEG data. The authors 
compare a number of algorithms, including CNN, 
RF, SVM, and RNN, emphasising that deep models 
and multimodal fusion have reached >99% 
accuracy in many trials. They also talk about 
datasets that are accessible to the public and 
stress how preprocessing can enhance PD 
detection performance. The review highlights the 
necessity for explainable AI to maintain clinician 
trust, but it also finds great promise for AI-based 
early diagnosis. Problems including privacy 
concerns, small datasets, inconsistent data 
collection, and the absence of standardised 
procedures are also emphasised. 
Research gaps include the requirement for large 
multi-center datasets, the inability of deep 
models to be explained, worries about data 
privacy, and the paucity of work on cross-
modality feature fusion [13]. 
 
Background of Parkinson's Disease 
1. Early Parkinson's Disease Detection 

Techniques: 

Timely intervention depends on an early and 
precise diagnosis of Parkinson's disease [15]. 
Conventional diagnosis relies on motor 
symptoms that emerge during severe 

neurodegeneration [1]. Because it is non-invasive 
and can show small changes in neurophysiology, 
EEG is a viable alternative for early detection [1], 
[14].  
By examining intricate patterns in brain electrical 
activity, machine learning approaches applied to 
EEG data have the potential to distinguish 
Parkinson's disease (PD) patients from healthy 
controls [15], frequently using convolutional 
neural networks or higher-order spectral 
features [16].  
The possibility of gender bias in machine 
learning models for Parkinson's disease (PD) is 
an important factor to take into account. To 
guarantee model generalisability and 
transferability, gender-specific patterns and 
biomarkers must be included [15], [17]. 
 

2. EEG-Based Feature Extraction Techniques 

The careful extraction of specific characteristics 
that capture the neurophysiological anomalies of 
Parkinson's disease (PD) is essential for 
successful ML implementation. These methods 
consist of:  

 Time-domain and Frequency-domain 
analyses: To evaluate oscillatory activity 
and functional coupling, characteristics 
including power spectral density 
components, band power ratios, and 
coherence measurements are frequently 
employed [18]. 

 Complex Signal Processing: To detect 
and improve particular oscillatory 
patterns and reduce artefacts that can 
distort model performance, methods such 
as Independent Component Analysis (ICA) 
and wavelet transforms are used [17], 
[19].  

 Nonlinear and connectivity-based 
metrics: These provide distinct 
perspectives on the intricate dynamics of 
brain activity [20]. 

The lack of high-quality biomedical data, 
particularly for Parkinson's disease (PD), and the 
diversity of feature extraction techniques are 
major obstacles [1], [21]. Using information from 
models trained on larger, related datasets, 
transfer learning is frequently used to overcome 
data scarcity. 
This Table 1 illustrates the end-to-end process of 
developing an AI-based system for PD 
classification, highlighting the split between 
traditional machine learning (ML) and modern 
deep learning (DL) approaches. 

 
 



Automated Detection and Classification of Parkinson's Disease Using Electroencephalography: A Review 

185 

 

Table 1. General Workflow for Automated PD Detection Using EEG 
Stage Process Traditional ML Path Deep Learning (DL) Path 

I. Data Acquisition Recording raw EEG 
signals (Resting-state 
or Task-state) using 
the International 10-
20 system. 

Raw EEG Time Series Raw EEG Time Series 

II. Preprocessing Filtering, Artifact 
Removal (ICA), 
Segmentation, 
Epoching. 

Cleaned EEG Epochs Cleaned EEG Epochs or 
Spectrograms 

III. Feature 
Extraction/Learning 

Manually calculate 
quantitative 
biomarkers. 

Feature Engineering: 
Extract Frequency (PSD, 
Ratios), Nonlinear 
(Entropy, Complexity), 
and Connectivity 
(Coherence, PLV) 
Features. 

Feature Learning: CNNs, 
LSTMs, or Hybrid 
Networks automatically 
learn hierarchical 
features from the input 
data (end-to-end). 

IV. Classification Train a classifier on 
the feature vector. 

Model Training: SVM, 
Random Forest, k-NN, 
XGBoost. 

Model Training: CNN, 
RNN/LSTM, CRNN 
(CNN+LSTM), GCN. 

V. Output Diagnostic prediction 
and confidence score. 

Classification: PD vs. 
Healthy Control (HC) 

Classification: PD vs. HC, 
Subtyping (e.g., Tremor 
vs. PIGD) 

 
3. Machine Learning and Deep Learning 

Approaches for Classification 

In order to classify PD automatically and 
accurately, complex machine learning and deep 
learning models must be applied to the retrieved 
data. 
 Traditional ML: When combined with 
efficient feature engineering, algorithms like 
Support Vector Machines (SVMs), Multi-Layer 
Perceptron’s (MLPs), and K-nearest neighbours 
(KNNs) have demonstrated great precision and 
accuracy [7], [22], [23]. 
 Deep Learning (DL): By removing the need 
for manual feature extraction and enabling end-
to-end learning from raw or little pre-processed 
EEG data, DL has completely transformed in the 
field of neuroscience [2]. Improved diagnostic 
accuracy can result from models like 
Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) (e.g., LSTMs) 
that can automatically learn complex patterns 
[6]. 
 Hybrid Models: One suggested 
Convolutional-Recurrent Neural Network 
(CRNN) model achieved accuracy in 
classification, demonstrating the remarkable 
promise of architectures that combine CNNs for 
spatial feature learning and RNNs for temporal 
dependency learning [2], [20], [22]. 

 Explainable AI (XAI): By offering clear 
insights into the models' decision-making 
processes, integrating XAI approaches is 
essential for developing clinical trust and 
facilitating a deeper comprehension of the 
neurological roots of Parkinson's disease [2], 
[24]. 
 
Methodology 
In order to maximise diagnostic accuracy and 
model interpretability, the reviewed approaches 
frequently combine advanced signal processing 
with hybrid deep learning architectures [9]. This 
methodology employs a multi-stage procedure 
that includes data acquisition, preprocessing, 
feature extraction, and a classification 
framework. 
1. EEG Data Acquisition and Preprocessing 

Using the standardised 10-20 international 
electrode placement technique, the first step 
entails capturing resting-state EEG signals from 
both PD patients and healthy controls  [2]. A 
minimum sampling rate of 250 Hz is frequently 
used during recordings. The following 
preprocessing stages consist of: 

 Denoising and Artifact Rejection: 
Applying methods such as independent 
component analysis (ICA). 
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 Filtering: Utilising band-pass filtering to 
improve the signal-to-noise ratio and 
identify relevant frequency ranges. 

 Segmentation: Fixed-duration epochs are 
created by segmenting filtered signals. 

To evaluate the effects of dopaminergic therapy 
and find reliable biomarkers, recordings of PD 

patients are frequently made when they are both 
on and off medication [2]. 
The table 2 summarizes the most commonly 
reported neurophysiological alterations in PD 
patients that serve as quantitative biomarkers for 
automated classification models. 

 
Table 2. Summary of Key EEG Biomarkers for Parkinson's Disease Classification 
Feature 
Domain 

Specific Biomarker Typical Finding in PD vs. 
HC 

Neurophysiological Relevance 

Frequency 
Domain 

Beta Band 
Power/Coherence (13–30 
Hz) 

Increased/Excessive 
Synchronization 

Pathological coupling in the 
cortico-basal ganglia loop; 
strongly correlated with 
rigidity and bradykinesia. 

Frequency 
Domain 

Delta & Theta Power (0.5–
8 Hz) 

Increased Power 
(Generalized Slowing) 

Non-specific sign of cerebral 
dysfunction; often linked to 
cognitive impairment and 
disease severity. 

Nonlinear 
Dynamics 

Approximate/Sample 
Entropy 

Decreased Reduced complexity and loss of 
adaptability in cortical 
dynamics; indicates a more 
rigid, predictable brain state. 

Nonlinear 
Dynamics 

Higher-Order Spectral 
(HOS) Features (e.g., 
Bispectrum Entropy) 

Altered Patterns/Values Reveals non-linear (quadratic) 
phase coupling between 
different frequency 
components, often affected by 
dopamine depletion. 

Functional 
Connectivity 

Phase-Locking Value 
(PLV) or Coherence 

Altered/Excessive 
Coupling (especially in 
Beta band) 

Disrupted information flow and 
functional network 
organization between spatially 
separated brain regions. 

 
2. Feature Extraction and Selection 

In order to distinguish between PD individuals, 
this procedure extracts significant quantitative 
descriptors from the pre-processed data [1], [2]. 
A wide range of features must be calculated: 

 Statistical Moments and Spectral 
Power: Power across various frequency 
bands [3], [22], [25]. 

 Connectivity Measures and Non-linear 
Dynamics: utilising cutting-edge 
techniques to find non-linear coupling 
information, such as higher-order spectral 
analysis, particularly bi-spectrum, 
cumulant, and lag vectors [1], [8], [22]. 

 Feature Selection: Techniques like 
univariate statistical analysis are applied 
to identify the most salient features, 
optimizing model performance and 
interpretability [2], [14], [22]. 

 

3. Classification Algorithms 

The preferred classification algorithms leverage 
these selected features, with a strong emphasis 
on deep learning: 

 Deep Learning Architectures: CNNs and 
RNNs are prime candidates for their ability to 
process sequential EEG data and extract 
hierarchical features [1], [26]. A convolutional-
recurrent neural network model, for instance, 
has shown promise by combining CNN strengths 
for spatial feature extraction and RNN strengths 
for temporal dependency learning [2]. 
 Transfer Learning: Application of models 
pre-trained on large biomedical datasets can 
enhance generalizability, especially given the 
limited PD-specific EEG data [2], [22]. 
 Baseline Models: SVMs and KNNs are widely 
employed as baseline ML algorithms [2]. 
Model robustness and generalizability are 
ensured by rigorous performance evaluation that 
uses metrics like accuracy, sensitivity, specificity, 
precision, F1-score, and Area Under the ROC 
Curve (AUC), as well as cross-validation 
techniques like k-fold validation [22], [27]. 
The dataset-related research gaps found in recent 
EEG-based Parkinson's disease investigations are 
summarised in Table 3. It draws attention to 
important drawbacks such small sample sizes, 
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limited channel configurations, a lack of multi-
center validation, and a lack of publicly accessible 
datasets. These omissions seriously impair the 
reproducibility and generalisability of the model, 

highlighting the critical need for large-scale, 
diverse, standardised EEG datasets for future 
studies. 

 
Table 3. Summary of Research Gap Related to Dataset 

Author(s) Year Journal Methodology / 
Technique Used 

Dataset Used Research Gap 
Related to Dataset 

A. M. Maití n 
et al. [1] 

2020 Applied Sciences ML Approaches for 
PD Detection, 
Feature Extraction + 
Classification 

Multiple small 
EEG datasets 
(varied 
sources) 

Lack of unified 
dataset; 
heterogeneous 
protocols; small 
sample sizes 

Shraddha 
Jain [8] 

2023 Research Square Review of EEG 
biomarkers for 
neurological 
disorders 

Not specific 
(general 
review of EEG 
datasets) 

No standardized or 
large-scale PD-
specific dataset 

S. Lee et al. 
[2] 

2019 Neuroscience 
Journal 

Deep CNN for EEG-
based PD detection 

Local hospital 
dataset 

Limited participants; 
no external 
validation 

J. P. Romero 
et al. [5] 

2019 MDPI Connectivity 
analysis, spectral 
features 

Public PD EEG 
(small sample) 

Dataset lacks early 
PD subjects; low 
geographical 
diversity 

R. Hussein 
et al. [4] 

2018 Expert Systems 
with 
Applications 

Wavelet + SVM Self-collected 
EEG 

Very small n (<30), 
limits ML accuracy 

U. R. 
Acharya et 
al. [7] 

2017 Neural 
Computing and 
Applications 
Springer 

Entropy features + 
ML 

University-
collected EEG 
signals 

No standardized 
motor-task protocol 

M. J. Wang 
et al. 

2019 Nature Sci 
Reports 

Deep learning + 
time-frequency 
features 

Proprietary 
clinical dataset 

Inaccessible dataset; 
limited 
reproducibility 

S. T. Lopes 2021 Frontiers in 
Neuroscience 

Graph-theory brain 
connectivity 
markers 

Public resting-
state PD EEG 

Dataset small and 
restricted to resting-
state only 

Z. J. Wang 2018 Medical 
Engineering & 
Physics 

Spectral slowing 
analysis 

Hospital EEG 
dataset 

Only medicated PD 
subjects; no 
comparison with 
unmedicated 

 
Technical and Ethical Challenges 
1. Technical Challenges 

1. Low Signal-to-Noise Ratio (SNR): EEG 
signals are inherently noisy due to 
artifacts from muscle movement, blinking, 
and external interference. 

2. Inter-Subject and Intra-Subject 
Variability: EEG patterns vary widely 
between individuals and even within the 
same subject over time, reducing model 
generalizability. 

3. High-Dimensional EEG Data: 
Multichannel recordings with high 
sampling frequencies create large 
datasets, requiring effective feature 
extraction or dimensionality reduction. 

4. Non-Stationarity of EEG Signals: EEG 

signals change rapidly over time, making it 
challenging to build stable and reliable 
detection models. 

5. Lack of Unified Preprocessing 
Standards: Different studies use different 
filtering, artifact removal, and 
normalization strategies, affecting 
reproducibility. 

6. Limited Size and Diversity of Public 
Datasets: Many EEG datasets have small 
sample sizes, limiting deep learning model 
performance. 

7. Challenges in Real-Time Processing: 
Real-time PD detection systems require 
low-latency algorithms, which remain 
difficult with computationally heavy 
models. 
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8. Feature Selection Complexity: 
Identifying disease-specific EEG 
biomarkers (like spectral slowing, reduced 
complexity, altered connectivity) remains 
challenging. 

 
2. Ethical Challenges 

1. Data Privacy and Patient Consent: EEG 
data contains sensitive neurological 
information; improper handling raises 
privacy concerns. 

2. Bias and Inequity in Datasets: Many 
datasets lack demographic diversity, 
leading to biased AI models that perform 
poorly on underrepresented groups. 

3. Transparency and Explainability: Black-
box deep learning models make clinical 
adoption difficult due to lack of 
interpretability. 

4. Clinical Reliability and Misdiagnosis 
Risk: False positives/negatives may lead 
to incorrect treatment decisions. 

5. Data Security in Cloud-Based EEG 
Systems: Remote EEG monitoring 
increases the risk of data breaches. 

6. Ethical Use in Continuous Monitoring: 
Persistent neuro-monitoring raises 
concerns of surveillance and autonomy. 

 
3. Identified Research Gaps 

1. Insufficient Large-Scale Parkinson’s 
EEG Datasets: Most studies rely on small 
patient cohorts, reducing model 
generalization power. 

2. Lack of Standardized EEG Protocols: 
Differences in electrode placement, 
sampling rates, and recording tasks make 
cross-study comparison difficult. 

3. Underexplored Deep Learning 
Approaches: While CNNs/LSTMs are 
used, advanced models like transformers, 
GNNs, or hybrid models remain 
underutilized. 

4. Limited Multimodal Integration: 
Combining EEG with gait analysis, speech, 
handwriting, or MRI is still rare. 

5. Weak Validation on External Datasets: 
Few studies test models across multiple 
datasets to ensure robustness. 

 
Conclusion 
This systematic review validates the 
considerable potential of machine learning and 
deep learning techniques in the automated 
identification and categorization of Parkinson's 
Disease through EEG. The most encouraging 
outcomes arise from hybrid deep learning 
models that effectively capture the spatial and 
temporal characteristics of EEG signals, with 

architectures such as the CRNN attaining 
impressive diagnostic accuracy. Feature 
engineering, especially through the use of higher-
order spectrum properties, is essential for 
enhancing model accuracy. 
Despite these advancements, several critical 
challenges persist that limit clinical translation: 

 Generalizability and Robustness: High 
inter-subject variability in EEG data and a 
lack of standardized acquisition protocols 
across studies hinder the development of 
universal diagnostic criteria. 

 Data Scarcity and Diversity: There is a 
critical need for more extensive, diverse, 
and meticulously annotated datasets to 
enhance the robustness and 
generalizability of diagnostic models. 

 Model Interpretability: The "black-box" 
nature of complex AI models is a barrier to 
clinical acceptance, underscoring the 
necessity for Explainable AI (XAI) 
techniques to foster clinician trust and 
provide insights into neural mechanisms. 

Future research must prioritize developing 
standardized, large-scale, multi-center datasets 
and explore multimodal data fusion (combining 
EEG with genetic, imaging, and clinical data) to 
yield a more comprehensive understanding and 
improve diagnostic and prognostic capabilities. 
Ultimately, integrating these advanced, 
explainable AI models with real-time monitoring 
holds the promise for a more proactive and 
comprehensive approach to PD diagnosis and 
personalized treatment strategies. 
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