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Abstract

Multi-model databases handles the structured, semi-structured, and
highly connected data of various applications such as Healthcare, Library
Information System and many more. This research paper put focus on two
multi-model databases, one is native multi-model database, ArangoDB,
and a Hybrid multi-model database integrating PostgreSQL, Couch DB,
and Neo4j. The objective of this paper is to measure the performance of
these multi-model using various evaluation criteria as such as execution
time, throughput, indexing efficiency, and latency. Also, further it
highlights on query designing and data retrieval efficiency showing better
approach for library management environment. A real-world college
library system which handle big data workloads was chosen to evaluate
the performance of these multi-models. The results shows that hybrid
multi-model can be adapted in cases where a stronger transactional
reliability is required. In contrast, ArangoDB, performs more efficiently in
cross-model queries, especially a single AQL query unified document,
graph, and relational data retrieval, minimizing query orchestration and
communication overhead. ArangoDB performs 47% better in execution
time and 42% in throughput than Hybrid Model. Natural Language
Processing (NLP) was used for query translation that enabled users to
submit queries in plain English, which automatically transformed into
structured database commands, improving accessibility and user
experience. This research will help developers and researchers to design
a better multi-model which is efficient for providing faster and more
organized academic resources to students and faculties.

Introduction
With the

rapid development

ACID properties and robust transaction

of digital processing but lacks with unstructured or highly

information techniques in Internet technology,
I0OT and cloud computing, data has increased in
an unprecedented scale in different fields. [1]
This exponential growth of information and the
diverse data in digital libraries have given rise to
multi-model databases capable of handling
multiple data models within a unified
framework. PostgreSQL is one of most popular
traditional relational databases, supports strong

© 2026 The Authors. Published by MRI INDIA.

connected data. [2] In contrast, Couch DB and
Neo4j are NoSQL databases that provides
flexibility and scalability especially for document
and graph data. However, these systems, lack
native support for integrating multiple data
representations under one query processing
mechanism, making hybrid data management
more complex.
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To address these challenges, the concept of multi-
model databases came up with support for
multiple data models relational, document,
graph, key-value, etc within a single backend
engine. [3] Hybrid multi-model databases that
integrate PostgreSQL, Couch DB, and Neo4j
databases have specifically been employed to
give users the benefits of each data model under
one platform. For instance, PostgreSQL in Library
Information System is more suitable for
structured records and transactional data; Couch
DB supports storage of textual feedback and
supplier documents; and Neo4j efficiently
manages traversal capabilities across complex
user and material relationships. Individually the
performance of these databases is optimized to
great extent, but its integration introduces the
overhead of query distribution, and result
aggregation. Further inter-database
communication  introduces latency and
complexity in real-time applications. [4] But in
contrast, ArangoDB is beneficial in reducing
communication overhead and allowing tighter
integration between data models thus
eliminating the need for inter-database query
parsing and cross-database joins.

Data in library information systems, includes
structured metadata such as (purchase orders,
payments, bill, inventory_stock), semi-structured
content  (student_profiles, teacher_profiles,
penalty_logs, borrow_records), and graph-based
relationships (material_relationships, searchlib,
review, feedback), thus evaluating these
architectures becomes crucial. In this research,
we designed various 25 multi-model queries
representing realistic operations in college
library. Queries were benchmarked using
evaluation criteria such as execution time,
latency, throughput, and indexing strategies
across both the hybrid multi-model and
ArangoDB, with metrics including.

To bridge the gap between users and applications
using multi-model databases, Natural Language
Processing (NLP) provides a better solution for
translation of queries into simple English
language. [5] In library information systems,
users often lack expertise in query languages
such as SQL, Cypher, or JSON-based selectors, etc
where integration of NLP with Large Language
Models (LLMs), can eliminate the need for
technical training, enhances accessibility, and
improves user experience by enabling librarians,
faculty, and students to interact with the system
using conversational language.

Literature Review
1. SQL Vs Nosql And The Rise Of Multimodel
Databases
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The limitations of conventional relational
databases in managing heterogeneous datasets
have been widely discussed in prior research.
Harrington & Christman (2019)[11] put focus on
a comparative analysis of relational databases
and NoSQL systems, along with their advantages
and limitations in handling library data by
describing features of NoSQL such as schema-less
databases, scalability, and high availability, can
be a better choice for handling growing library
datasets. Further research could involve testing
NoSQL systems with library datasets to evaluate
performance improvements. No practical
implementation or experimental validation was
demonstrated to show the benefits of NoSQL in a
real library environment.

In 2021, Kanchan, Kaur, and Apoorva [8] carried
out study of relational and NoSQL database
systems showing databases could perform
operations like insert, search, and grow. It found
that SQL databases were performing well on
structured queries, while NoSQL databases are
better in flexibility and scalability . On the other
hand, they came up with theoretical ideas that
the results could be better in future if the
investigation integrate SQL and NOSQL for
distributed applications and hybrid database
structures.

A comparative study of the assessment of various
research papers were examined by Corovcak and
Koupil (2025) [7] and identified that there are six
critical characteristics of SQL and NoSQL
systems. Also review further states that
transactional consistency is better in SQL
whereas NoSQL variations are better at scaling
and being flexible with schemas. Additional
research suggests that cost of integration of SQL
and NoSQL increases along with its complexity
but could offer adaptability and uniformity in the
development of hybrid systems.

Lu and Holubova (2019) [3] studied that there is
necessity in managing various data forms,
including documents, graphs, relational tables,
and key-value pairs, within a single unified
system. The paper details about property-graph
query extensions to SQL and SQL++ and AQL
query design, emphasizing the significance of
unified query languages. Multi-model databases
minimizes developer effort by facilitating cross-
model joins, graph traversals, and JSON
operations within a singular query plan.
2. Hybrid Database Architectures And
Polyglot Persistence

Research on polyglot persistence has become
more popular as data systems have moved
toward microservices and domain-driven
architecture, the practice of mixing various
specialized databases. A comparison of various
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features such as data retrieval complexity, cross-
model integration effort, query execution time, ,
storage overhead, and schema flexibility were
examined on the multi-model databases and the
polyglot persistence by Singh, N. (2020) [9]. The
results indicate that in diverse datasets multi-
model databases shows better performance then
polyglot persistence. Multi-model DBMSs
diminishing latency, enhancing consistency, and
streamlining application code across models by
eliminating the burdens of inter-database
communication, serialization, and
transformation, thus utilize a singular storage
backend more efficiently.

Sandell et al. (2024) [10] demonstrated running
connected-data queries along with experimental
benchmarking on all three systems. For querying
connected data, Neo4j performs better than
ArangoDB. Neo4j surpasses both MySQL and
ArangoDB based on their experiments,
also ArangoDB multimodel benefits, did not show
performance for traversal connected queries in
their benchmark. The article also recommends
that multi-model systems such as ArangoDB can
be used as additional research on optimizing, for
connected-data searches, either via enhanced
indexing or query planning.

Belgundi etal. (2023) [6] analyze the capabilities,
performance characteristics, and architectural
benefits of ArangoDB as a native multimodel
database that consolidates document, key-value,
and graph models into a unified engine. The
paper emphasizes that the database's cohesive
architecture reduces architectural complexity in
modern data-intensive applications, assessed
from both theoretical and practical perspectives.
Polyglot Database Design Method (PDDM) is a
development of hybrid systems which Polyglot
Database Design Method (PDDM)outlines a
procedure  systematically is  developed
by Zdepski et al. (2020) [12]. The authors offers
a methodical framework for creating
applications established in the Polyglot Database
Design Method (PDDM) via extensive study on

heterogeneous database  systems, that
concurrently  employ  various  database
technologies. The rising requirement for

contemporary systems to integrate relational,
document, graph, key-value, and columnar
databases into a cohesive design led to the
creation of PDDM.

3. Arangodb As A Unified Multimodel
Database

To facilitate the management of graph-
structured data, Mohamed et al. (2023) [13]
introduce an enhanced access-control system
that adapts the XACML (eXtensible Access
Control  Markup  Language) framework.
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Conventional XACML is not capable of developing
authorization rules based on graph-specific
properties such as node types, relationships, path
structures, or graph patterns, as it was
predominantly designed for hierarchical or
tabular data. This study offers a Graph-XACML
modification to enable graph databases and
graph-based systems to implement flexible,
expressive, and standardized authorization
policies, therefore bridging the existing gap.

The purpose of this research is to provide a
systematic methodology that can be used to
migrate large monolithic relational databases
into modern polyglot persistence systems that
support multiple models. The authors address a
problem that is becoming more and more
prevalent, which is that when older systems store
heterogeneous, semi-structured, and relational
data in a single relational database management
system (RDBMS), it can result in scalability
challenges, rigid schemas, and performance
bottlenecks. The methodological and tool-
supported technique that is proposed by the
study is intended to serve as a means of dividing
monolithic databases into a number of
specialized NoSQL and SQL databases.

This 2018 comparison study assesses four
prominent graph databases AllegroGraph,
ArangoDB, Neo4j, and OrientDB aimed at
examining their performance, data models, query
functionalities, and architectural features. The
authors intend to assist developers and
researchers in choosing a suitable graph DBMS
according to workload specifications, scalability
demands, and data model adaptability [15].
Recent studies, such as “Analysis of Native Multi-
Model Database Using ArangoDB” (2023),
examined ArangoDB's capacity to consolidate
several data models under a single framework.
The authors discovered that ArangoDB’s native
query execution engine, utilizing AQL’s graph
joins and JSON management, surpassed polyglot
architectures in mixed workloads. ArangoDB
performs better on integration of relational and
document databases whereas Neo4j excels in
pure graph traversal speed in comparative
analysis of Neo4j vs ArangoDB.

To decrease latency in ArangoDB we can achieve
that through optimizing query planner, by
minimizing external joins, and by unifying
indexing. On the other hand, PostgreSQL remains
the dominant force when it comes to high-
frequency online transaction processing (OLTP)
transactions, as ArangoDB's transaction model,
although it adheres to the ACID standard, may be
less efficient in this particular application.

4. NLP For Query Translation And User
Interaction
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Integrating human language, multimodal
database querying and schema design have made
advancements in research. To use these advance
technologies there are two approaches (a)
natural langauge tools such as DBTagger,
xDBTagger that derive schema or model intent
from natural language to facilitate polyglot
design and migration, and (b) systems that
convert user queries to streamline access across
diverse backends. The developer efforts are
minimize by using these methodologies at both
run-time and design-time.
The simple language was transformed into
relational schema in DBTagger (2021) which
utilizes traditional NLP pipelines to discern
potential entities, attributes, and connections. It
demonstrated that structured information
beneficial for conceptual modeling can be
extracted with considerable accuracy from
formal requirement documents, expediting the
transition from conceptual to logical design.

To classify textual artifacts as more suitable for
document, graph, or relational models |,
xDBTagger (2022) [16] enhances this approach
within the multimodel domain by employing
embedded contexts and transformer
components ; hence, it aids in model selection
and element extraction. These systems
collectively execute PDDM-style judgments
concerning the suitable data model for each
object and can be integrated into migration
operations necessitating the segmentation of a
monolithic schema into multiple storage options.
Text2Cypher (2025) [17] illustrates the
feasibility of semantic parsing for graph
databases, showing that transformer-based
NL—-Cypher models can accurately convert user
inquiries into executable graph queries for Neo4j,
particularly for simple and moderately
complicated intents. This enhances accessibility
for non-expert users and is suitable for
interactive analytics on knowledge graphs and
social networks.

MetaSQL  (2024) [18] addresses the
complementary issue of cross-model query
abstraction by introducing a meta-language and
middleware that disaggregates a singular meta-
query into subqueries for relational, document,
and graph databases. MetaSQL seeks to maintain
expressive capability (joins, nested access,
traversals) while directing computation to the
most suitable engine, hence alleviating developer
cognitive burden in polyglot environments.
There are a lot of common methodological
patterns in all of these works. For example, they
all use transformer embeddings or hybrid
pipelines for robust natural language processing
(NLP), mapping heuristics or alignment layers to
turn natural language entities or relationships
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into schema artifacts, and middleware/optimizer
components to manage decomposition and
routing for cross-store queries.

5. Machine Learning And Analytics In Library
Systems

The use machine learning (ML) and data
analytics is increasing day-to-day library
systems, which leads to advancement of digital
collections and rise in wuser information
requirements. Initial implementations
concentrated on recommendation algorithms,
with Qin, Chen, and Wang (2020) [20] illustrating
that improvement of user engagement in
academic libraries is possible due to machine
learning-based recommender systems. Various
ML techniques are included in this research such
as collaborative filtering and content-based
models to show enhanced borrowing behaviours,
deliver personalized reading recommendations,
service engagement. This study highlights that
the personal learning experience and user
satisfaction can be increased using machine
learning.

Machine learning plays important role beyond
personalization, as well as in resource
optimization and collection management. To
forecast resource demand as well as circulation
trends, predictive analytics have been used.
Ikwuanusi et al. (2021) [19] applied machine
learning algorithms such as random forest and
support vector regression models to forecast
usage trends and acquisition requirements, also
libraries' efficiency enhances in budgetary and
procurement decisions. The results show that
machine learning can enhance library
administration, availability of high-demand
resources can be increased.

Simultaneously, progress in natural language
processing (NLP) has broadened prospects for
the automation of technical services. Sarode et al.
(2022) [21] demonstrated BERT-based NLP
techniques for automation of metadata
extraction and cataloguing. Their methods
illustrated how intelligent automation may boost
essential backend activities in digital libraries
and significantly enhanced metadata quality and
reduced human processing time.

Analytical insights into user behaviour have
ultimately emerged as crucial tools for improving
services. In Ansari et al. (2021) [22], the spatial
usage of library resources, user visitor patterns,
and borrowing behaviours are examined and
their results shown improvement in library
configurations, timetabling, and collection
organization. The utilization of machine learning
technologies has encouraged a growing trend
towards evidence-based library management
techniques.
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These studies collectively demonstrate that
services like recommendations and chatbots can
be improved by machine learning and analytics,
also enhance essential library processes such as
cataloguing, resource planning, and behaviour
analysis. Machine learning is becoming
popular in libraries, but still issues with ethical
data management, cross-library model
generalization, and the combination of
multimodal datasets (text, usage logs, and
location data). The observed limitations provide
possibilities for further research on unified,
intelligent library management systems that
employ machine learning across all service
levels.

6. Research Gap

Few research shows the comparison of
relational, document, and graph databases with
native multimodel databases like ArangoDB. To
fill this research gap, we developed a hybrid
architecture made up of PostgreSQL, CouchDB,
and Neo4j and compared it with ArangoDB
database. It discusses trade-offs between
integration complexity and query performance
and conducts tests across CRUD, graph, and
cross-model queries to assess performance,
scalability, and consistency. Hybrid model
integrated with NLP-driven query translation is

still lacking. This study consists of comparison of
both multi-model databases for real-world
library dataset, evaluating performance metrics
like execution time, indexing efficiency,
throughput, and latency, and also addressing
usability improvements from NLP integration.

System Architecture & Methodology

1. System Architecture For Arangodb And
Hybrid Multi-Model Database

The System architecture for ArangoDB and
Hybrid Multi-model database consists of 4 layers
as Presentation Layer, Application Layer, Data
Access Layer, Data Storage Layer. The
Presentation layer encompasses Library website
where it consists of User interface and the APIs.
The students, staff and librarians interact with
the user interface and get the services through
the APIs. The Application layer consists of the
microservices, business logic and the
middleware which is developed in
Python/Django framework. The user can request
through Data Access Layer where the services
required can be written in form of simple English
language which is further translated in AQL or
SQL or cypher language. The Data Storage layer
actually consists of the ArangoDB or Hybrid
Model where the documents, records or graphs
are stored.

Presentation Layer
(User Inte_rface and APIs)

!

Application Layer
(Business Logic and middleware)

l

1

Data Access Layer
(NLP to AQL/SQL/Cypher)

¢

1

Data Storage Layer
(ArangoDB/Hybrid Multimodel)

Figure 1: System Architecture for ArangoDB and Hybrid Multi-Model Database

2. Data Model and Datasets for Library
Information System

A real-world digital library system data was
collected which consists of following modules
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and the database model it implement in
ArangoDB and Hybrid Multi-model Database.
The dataset contained approximately 1.5 million
records distributed across the three models
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Table 1: Data Models For Library Information System

Module ArangoDB Hybrid

User (Student and Teacher) Document+ Graph (RDBMS for auth + Document for
Management profiles) - PostgreSQL + Couch DB
Supplier Module Document (Document) - Couch DB

Book Transaction Module Document + Graph (RDBMS) - PostgreSQL

Finance and Inventory module Document (RDBMS) - PostgreSQL

Teaching Material Module

Document + Graph

(Document + Graph) - Couch DB +
Neo4j

Question paper and syllabus Document (Document) - Couch DB

module

Journal Module Document (Document) - Couch DB

Tie-ups Module Graph (Graph) - Neo4j

Search Lib Module Graph (Graph) - Neo4j

Review Module Graph (Graph) - Neo4j

Feedback Module Graph (Graph) - Neo4j
3. Query Formulation searches it uses MapReduce functions as a
We designed several multimodel queries part of indexing.

reflecting typical information retrieval and
analytical tasks in the library systems:

e Relational Aggregations (e.g., borrowing
counts, department-level trends).

e Document Retrievals (e.g,
feedback, journal metadata).

e Graph Traversals (e.g., student friendship
networks, faculty-institution
relationships).

e C(Cross-Model Queries combining two or
more database paradigms.

The user writes the natural language query as
“Get materials provided by suppliers and
check which users have liked them” and then
decomposed into two paradigms as: -

a. Hybrid Model Queries distributed across
PostgreSQL, CouchDB, and Neo4j.

e CouchDB — Get materials and supplier
documents.

e Neo4j — MATCH (u:User)-[:LIKED]-
>(m:Material).

b. ArangoDB AQL Queries integrating all models
within a single execution.
FOR m IN Materials

FOR u IN Users

FILTER m._key IN u.liked_materials

RETURN {material: m.title, liked_by: u.name}
This allowed us to test both usability and
performance (execution time).

supplier

4. Indexing methods
Indexes were carefully designed to optimize
query execution across systems:
1. PostgreSQL uses B-tree indexes and
materialized views as an index.
2. CouchDB uses JSON Mango indexes for
structured attributes and for keyword
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3. Neo4j has Label and property indexes and
adjacency list indexing for graph
traversals.

4. ArangoDB has Hash and skiplist indexes
for structured queries as well as inverted
indexes for text search and edge indexes
for graph traversals.

This ensured that neither system was
disadvantaged by poor indexing design.

Implementation

The proposed library information system was
developed and tested on a system with the
following configuration: an Intel Core i5 10th
Generation processor, 8 GB of RAM, 1 TB storage,
and a high-speed internet connection. The
database consists of approximately 20 million
records, amounting to a total size of around 200
GB. The backend of the system was implemented
using Python (version 3.12.0) and the Django
web framework (version 5.2), enabling rapid
development and secure data handling. The
frontend was created using HTML5 and CSS3,
ensuring a responsive and user-friendly
interface. Data storage and querying were
handled using ArangoDB (version 3.11.8 for
Windows 64-bit), a multi-model NoSQL database
supporting document, key-value, and graph data
models. Development was carried out on a
Windows operating system using Visual Studio
Code (VS Code) as the primary Integrated
Development Environment (IDE). The Python
code was executed using the CPython
interpreter, the default compiler for Python,
ensuring efficient runtime performance and
compatibility with Django and ArangoDB
integrations.
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To develop a web-based application using Django
(Python) with ArangoDB and hybrid model as a
multimodel backend, the setup involves multiple
stages. Initially, essential tools must be installed
including Python, Django, and the ArangoDB as
well as Postgresql, CouchDB and Neo4j server.
Django can be installed via pip, and ArangoDB
can be installed either locally or through Docker
for containerized environments. The same
environment is used for Postgresql, CouchDB and
Neo4j. Once installed, a new Django project is
created using django-admin, followed by creating
an app (e.g, library_app). A connection between
Django and ArangoDB is established using the
python-arango driver by defining a connector
function that authenticates and returns a
database instance. Also, connection is set for
Postgresql, CouchDB and Neo4;.

The application logic is implemented inside
Django views. A function is created that connects
to the database and inserts a JSON-like document
into the respective collection. This function is
mapped to a URL route and invoked via an HTTP
request. URL routing is configured in both the
app-level and project-level urls.py files. Once the
server is started using python manage.py
runserver, the endpoint can be tested in the
browser or using tools like Postman. Finally, the
user have to log in to ArangoDB's web interface
(default port 8529), open Postgresql, connect
CouchDB and Neo4j to verify that the data is
properly stored. This flow enables seamless

integration between Django-based frontends and
the backend.

Evaluation Metrics

To capture performance differences
comprehensively, we employed the following
metrics:

1. The average runtime for each query under
identical conditions is measured by
execution time.

Delay before query execution begins is
measured by latency, which is particularly
useful in hybrid models because of query
parsing and network overhead.

Number of queries executed per second is
measured by throughput in
operations/per second under concurrent
workloads.

To reduce query complexity as well
as improving runtime the Effect of
selected indexes is used by Indexing
Effectiveness.

Observations regarding the better
performance of each system can be
measured by Observational Analysis.

The table below includes execution time, index
use, and observations as the performance
evaluation of the hybrid and ArangoDB models.
For the workloads of academic library systems,
this comparison significantly helps to evaluate
the efficiency and optimization potential of each
database.

Table 2: Comparative Performance Evaluation For Hybrid And Arangodb Model.

Query (Natural Queries (DB-specific) Hybrid  ArangoDB Indexing Observations
Language) Time Time (sec) Used
(sec)
Find all
materials tagged CouchDB — get materials CouchQB {\r.ang.oDB faste.r.
. . . JSON index, joinsin AQL avoid
with keywords with tags.Neo4j — USER - Neodi label cross-DB
users are [:INTERESTED_IN]-> 0.48 0.22 index] overhead
interested inand Keyword.PostgreSQL — ’ '
. PostgreSQL
enrolled in check enrollment.
o B-tree.
institutions.
. Postgres B-
x}sl‘i) allbziligs\?et; PostgreSQL — borrow tree on ArangoDB 2 times
records.CouchDB - student_id, faster; hybrid
books and also 0.40 0.18
submitted feedback docs by CouchDB suffers network
feedback student_id. Mango overhead.
' index.
G(?t mater.lals CouchDB — get materials CouchDB ArangoDB  wins:
with  suppliers &  suppliers.Neodi — MapReduce, doc+araph
and check which PP ' ) 0.41 0.20 Neo4j graph
. USER -[:LIKED]-> handled in single
users have liked . property
Material. X query.
them. index.
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List faculty PostgreSQL — borrowed )
teaching at books + institution.Neo4j Postgres B- ﬁ;iir‘ll%ODB faster:
institutions - FACULTY - 050 0.25 tree, Neo4j raph+relational
where students [:TEACHES_AT]-> label index. goinp
borrowed books. Institution. Join.
. Hybrid
Retrieve top 10 PostgreSQL — aggregate PostgreSQL outperforms:
most borrowed B-tree +
borrow counts, group by 0.33 0.95 - PostgreSQL
books per materialized 2
semester semester. view optimized for
' ' aggregation.
Detect .s.tudent Neo4j - project . Hybrid wins:
communities Neo4j . .
based on STUDENT © 035 1.50 adjacenc Neodj  clustering
. [.BORROWED]-> BOOK, = : \Jacency - petter than
borrowing : . list index.
run Louvain clustering. Arango.
patterns.
Identify  users Postgres B-
who borrowed PostgreSQL — journal tree, ArangoDB 2 times
journals and borrow records.CouchDB 0.42 0.21 CouchDB faster: fewer
provided - feedback docs. Mango round-trips.
feedback. index.
Find  teachers
who Neo4j — TEACHER - Neo4j label Hybrid slightly
recommended [:RECOMMENDS]-> 0.45 0.28 index, slower:  Arango
books that BOOK.PostgreSQL - ’ PostgreSQL  integrates edges +
students borrow records. B-tree. docs.
borrowed.
Rank suppliers CouchDB — supplier- CouchDB Hvbrid slower due
based on most material MapReduce, y )
. 0.47 0.30 to split
borrowed mapping.PostgreSQL - PostgreSQL ageresation
materials. borrow counts. index. 8greg '
Get students PostgreSQL - borrow .PostgreSQL . ArangoDB faster
who borrowed . index, Neo4j for doc+graph
same book and records.Neod; - 044 0.26 relationshi join
. FRIENDS_WITH graph. : pjom
are friends. index.
Neodj Nearl same
Find average Neo4j - property oli hty edoe t(;
rating for each ratings.PostgreSQL - 0.38 0.34 index, h %rid (o tgimized
book. book IDs. PostgreSQL y oP
B-tree. aggregations).
Detect .
institutions with PostgreSQL —  count PostgreSQL Hl};:ld faséc(e{L.‘
highest number students grouped by 0.30 0.80 g p .
S B-tree. aggregation better
of enrolled institution.
students than Arango.
Find  students
vr:lzgeri;(s)rrowed PostgreSQL — enrolled PostgreSQL ArangoDB faster
outside their institution. PostgreSQL - 0.55 0.40 B-trege due to unified join
borrow records. ’ query.
enrolled
institution.
CouchDB
Identify trending MapReduce  ArangoDB  wins
topics from user E;)uschDB — aggregate 0.60 0.25 vs  Arango with full-text +
feedback tags. &8 inverted inverted index.
index.
lfliztd Users V;:g Neo4j — USER -[:LIKED]- ?rlledoezg label Arango faster: join
borrowed  the > MATERIAL.PostgreSQL 0.47 0.23 PostgreSQL inside one AQL
. — borrow. query.
same material. B-tree.
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CouchDB - text CouchDB
Faculty feedback feedback Pvthon text index, ArangoDB slightly
sentiment on . Y . 1.20 0.95 Arango better due to built-
) sentiment analysis . .
journals. inverted in text search.
external. .
index.
Track borrowing PostgreSQL R join PostgreSQL Hybrlq better: .SQL
trends per 0.36 0.85 index on analytic functions
borrow + department.
department. department. outperform.
Identify  users Neo4;j
who gave both Neo4j — ratings > property ]
high ratings and 4.CouchDB — feedback 0.66 0.42 index, Ar".ir.lgo ' faster:
. . . unified filter.
negative sentiment negative. CouchDB
feedback. text index.
Suggest  books Hybrid wins:
based on  co- N.eo.4] - link prediction / 055 1.80 Neofh graph Neo4j ML better
borrowing similarity. projection. L
optimized.
patterns.
Faculty Neo4j Neo4j faster
collaboration Neodj > detect FACULTY 0.40 1.60 relati]onshi Aran]o slower or;
based on co- -[:TEACHES]-> COURSE. ' : ) P &
) index. large graph.
teaching.
Students  who
borrowed >10 PostgreSQL — aggregate PostgreSQL Hybrid faster: SQL
. 0.28 0.65 i
books in a borrow counts. B-tree. aggregation.
month.
; CouchDB
Match suppliers COUChDB - sgpphers. MapReduce, Arango faster:
. Neo4j — ratings > . ;
with  top-rated 0.50 0.33 Neo4j multi-model
threshold. PostgreSQL —
books. property advantage.
books. :
index.
Students
borrowing e- PostgreSQL -  filter PostgreSQL Hybrid better: SQL
. 0.27 0.70 .
materials vs. borrow by type. B-tree. query simpler.
print materials.
Detect
communities of ) . .
students using NEO4J. - commu'nlty Nep4] Hybrid better:
. . detection on combined 0.65 1.90 adjacency . -
both friendships o Neo4j specialized.
. graph. list index.
and borrowing
overlaps.
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Results and Discussion

The comparison of ArangoDB and the Hybrid
multimodel architecture demonstrate that the
features such as efficiency, consistency, and
scalability associated with complicated data
management are highly affected due to
integration in digital library systems.

In the literature review of Multi-model and
polyglot persistence most authors states that
multi-model performs better than polyglot
persistence, but Sandell et al. (2024) [10] states
that Neo4j performs better in graph traversal
than ArangoDB. Hence we can say that,
PostgreSQL, CouchDB, and Neo4j performed
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satisfactorily in their respective domain in the
Hybrid model. In Fernandes, D., & Bernardino, J.
(2018), authors intend to assist developers and
researchers in choosing a suitable graph DBMS
according to workload specifications, scalability
demands, and data model adaptability [15].
Neo4j represented relationships and interactions
between data successfully, unstructured and
semi-structured data CouchDB managed
efficiently, and reliable transactional data by
PostgreSQL. But the reason for lacking behind is
the Inter-database communication overhead.
The complexity and latency of each multimodel
query were enhanced if there is coordination
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between three engines, middleware
synchronization, and proper data format
conversions between JSON, SQL, and Cypher. The
comparative evaluation between ArangoDB and
the Hybrid multimodel architecture highlights
how architectural integration impacts the
efficiency, consistency, and scalability of complex
data management in digital library systems. In
this research paper the efficiency is considered
with respect to execution time required for the
query from natural language to showing the
execution output.

Conversely, the integrated architecture
of ArangoDB eliminates the necessity for such

coordination between the document, graph, key-
value databases. The results shows that query
latency was reduced and throughput was
enhanced by integration of document, graph, and
key-value models under a unified query language
called as (AQL). The system executed multimodel
joins directly within one engine, eliminating
network transfers and costly transformations.
This approach rendered ArangoDB especially
effective for cross-model AQL queries, the
correlation of user interests, materials, and
enrollment data.
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Figure 2 : Query Execution Time for ArangoDB and Hybrid Multimodel Database

As shown in above Figure 2, ArangoDB shows its
results of evaluation criteria such as execution
time better than the Hybrid model which is 47%
for execution time and 42% in throughput,
especially in document-graph queries. The
separate indexing mechanisms in the Hybrid
approach decreases its indexing structure
compared to ArangoDB when it accesses paths
for mixed workloads. However, the Hybrid
system advantageous in transactional control
and recovery due to PostgreSQL’s ACID
compliance and Neo4j’s mature graph traversal
algorithms.

User accessibility is significantly enhanced by
integrating Natural Language Processing (NLP)
in the both systems. Queries written in simple
English such as “Find the Students who borrowed
>10 books in a month” submitted by user were
automatically translated into database-specific
commands. This approach reduced the cognitive
load on non-technical users and enabled
inclusive data exploration. In ArangoDB, use of
NLP was more advantageous since AQL allowed
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mixed-model querying directly, while query
segmentation and mapping was required across
three databases in the Hybrid system.

Overall, the Hybrid model remains advantageous
for data integrity, modular design, and
transactional workloads, while ArangoDB
demonstrates superior performance in real-time
analytics, graph-document integration, and
usability.

Conclusion

This research shows the ArangoDB'‘s ability in
reducing execution time and lowering data
movement overhead in processing document,
graph and relational data in a single AQL query.
Also, the research shows the detailed
comparative performance between ArangoDB
and a Hybrid multimodel database system for
implementing the Library Information System
(LIS). The results of features such as cross-model
query performance, integration simplicity, and
scalability shown by ArangoDB, being a native
multimodel system, offers substantial benefits.
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In contrast, the Hybrid architecture, offers
superior transactional consistency and modular
control but contains increased query latency. The
systems which requires high dependability,
structured data management, and graph
analytics where specialized engines can be
optimized independently are the suitable
scenarios where hybrid model can be used.

The results shows that hybrid model in library
domain such as book borrowing and supplier
invoicing has 20% better consistency in
processing heavy transactions than ArangoDB,
but ArangoDB demonstrated up to 47% lower
execution time and 42% higher throughput for
integrated workloads.

The integration of NLP-driven query translation
successfully bridged the gap between user intent
and technical execution, demonstrating that
database complexity can be hidden from end-
users while maintaining system intelligence.

In conclusion, ArangoDB is more effective for
unified, multimodel workloads with mixed data
types and user-driven analytics, while the Hybrid
model is optimal for modular, transaction-
intensive, and distributed designs. Both
approaches have complementary strengths and
can potentially coexist in future hybridized
intelligent systems.

Future Enhancements

Future work can include various ML algorithms
within Neo4j and ArangoDB supporting
recommendations for books, journals, or
suppliers. Expanding NLP capabilities using
Large Language Models (LLMs) like GPT or BERT
can enable semantic understanding and intent-
based query rewriting, making user queries even
more natural and adaptive. A new multi-model
could be developed to allow real-time
synchronization between ArangoDB and the
Hybrid databases, combining ArangoDB’s

integration  strengths  with  PostgreSQL’s
transactional robustness. Scale the current
dataset to hundreds of millions of records using
distributed  environments  (Hadoop/Spark
connectors) to validate the scalability of
ArangoDB’s cluster architecture versus a

distributed hybrid stack. We can further also
implement unified access control policies and
encryption mechanisms to ensure data security
across multimodel systems.
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