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Abstract 

Multi-model databases handles the structured, semi-structured, and 
highly connected data of various applications such as Healthcare, Library 
Information System and many more. This research paper put focus on two 
multi-model databases, one is native multi-model database, ArangoDB, 
and a Hybrid multi-model database integrating PostgreSQL, Couch DB, 
and Neo4j. The objective of this paper is to measure the performance of 
these multi-model using various evaluation criteria as such as execution 
time, throughput, indexing efficiency, and latency. Also, further it 
highlights on query designing and data retrieval efficiency showing better 
approach for library management environment. A real-world college 
library system which handle big data workloads was chosen to evaluate 
the performance of these multi-models. The results shows that hybrid 
multi-model can be adapted in cases where a stronger transactional 
reliability is required. In contrast, ArangoDB, performs more efficiently in 
cross-model queries, especially a single AQL query unified document, 
graph, and relational data retrieval, minimizing query orchestration and 
communication overhead. ArangoDB performs 47% better in execution 
time and 42% in throughput than Hybrid Model. Natural Language 
Processing (NLP) was used for query translation that enabled users to 
submit queries in plain English, which automatically transformed into 
structured database commands, improving accessibility and user 
experience. This research will help developers and researchers to design 
a better multi-model which is efficient for providing faster and more 
organized academic resources to students and faculties. 
 

 
Introduction 
With the rapid development of digital 
information techniques in Internet technology, 
IOT and cloud computing, data has increased in 
an unprecedented scale in different fields. [1] 
This exponential growth of information and the 
diverse data in digital libraries have given rise to 
multi-model databases capable of handling 
multiple data models within a unified 
framework. PostgreSQL is one of most popular 
traditional relational databases, supports strong 

ACID properties and robust transaction 
processing but lacks with unstructured or highly 
connected data. [2] In contrast, Couch DB and 
Neo4j are NoSQL databases that provides 
flexibility and scalability especially for document 
and graph data. However, these systems, lack 
native support for integrating multiple data 
representations under one query processing 
mechanism, making hybrid data management 
more complex.  
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To address these challenges, the concept of multi-
model databases came up with support for 
multiple data models relational, document, 
graph, key-value, etc within a single backend 
engine. [3] Hybrid multi-model databases that 
integrate PostgreSQL, Couch DB, and Neo4j 
databases have specifically been employed to 
give users the benefits of each data model under 
one platform. For instance, PostgreSQL in Library 
Information System is more suitable for 
structured records and transactional data; Couch 
DB supports storage of textual feedback and 
supplier documents; and Neo4j efficiently 
manages traversal capabilities across complex 
user and material relationships. Individually the 
performance of these databases is optimized to 
great extent, but its integration introduces the 
overhead of query distribution, and result 
aggregation. Further inter-database 
communication introduces latency and 
complexity in real-time applications. [4] But in 
contrast, ArangoDB is beneficial in reducing 
communication overhead and allowing tighter 
integration between data models thus 
eliminating the need for inter-database query 
parsing and cross-database joins.  
Data in library information systems, includes 
structured metadata such as (purchase orders, 
payments, bill, inventory_stock), semi-structured 
content (student_profiles, teacher_profiles, 
penalty_logs, borrow_records), and graph-based 
relationships (material_relationships, searchlib, 
review, feedback), thus evaluating these 
architectures becomes crucial. In this research, 
we designed various 25 multi-model queries 
representing realistic operations in college 
library. Queries were benchmarked using 
evaluation criteria such as execution time, 
latency, throughput, and indexing strategies 
across both the hybrid multi-model and 
ArangoDB, with metrics including.  
To bridge the gap between users and applications 
using multi-model databases, Natural Language 
Processing (NLP) provides a better solution for 
translation of queries into simple English 
language. [5] In library information systems, 
users often lack expertise in query languages 
such as SQL, Cypher, or JSON-based selectors, etc 
where integration of NLP with Large Language 
Models (LLMs), can eliminate the need for 
technical training, enhances accessibility, and 
improves user experience by enabling librarians, 
faculty, and students to interact with the system 
using conversational language. 
 
Literature Review 
1. SQL Vs Nosql And The Rise Of Multimodel 
Databases 

The limitations of conventional relational 
databases in managing heterogeneous datasets 
have been widely discussed in prior research. 
Harrington & Christman (2019)[11] put focus on 
a comparative analysis of relational databases 
and NoSQL systems, along with their advantages 
and limitations in handling library data by 
describing features of NoSQL such as schema-less 
databases, scalability, and high availability, can 
be a better choice for handling growing library 
datasets. Further research could involve testing 
NoSQL systems with library datasets to evaluate 
performance improvements. No practical 
implementation or experimental validation was 
demonstrated to show the benefits of NoSQL in a 
real library environment. 
In 2021, Kanchan, Kaur, and Apoorva [8] carried 
out study of relational and NoSQL database 
systems showing databases could perform 
operations like insert, search, and grow. It found 
that SQL databases were performing well on 
structured queries, while NoSQL databases are 
better in flexibility and scalability . On the other 
hand, they came up with theoretical ideas that 
the results could be better in future if the 
investigation integrate SQL and NOSQL for 
distributed applications and hybrid database 
structures. 
A comparative study of the assessment of various 
research papers were examined by Corovčák and 
Koupil (2025) [7] and identified that there are six 
critical characteristics of SQL and NoSQL 
systems. Also review further states that 
transactional consistency is better in SQL 
whereas NoSQL variations are better at scaling 
and being flexible with schemas. Additional 
research suggests that cost of integration of SQL 
and NoSQL increases along with its complexity 
but could offer adaptability and uniformity in the 
development of hybrid systems. 
 Lu and Holubová (2019) [3] studied that there is 
necessity in managing various data forms, 
including documents, graphs, relational tables, 
and key-value pairs, within a single unified 
system. The paper details about property-graph 
query extensions to SQL and SQL++ and AQL 
query design, emphasizing the significance of 
unified query languages. Multi-model databases 
minimizes developer effort by facilitating cross-
model joins, graph traversals, and JSON 
operations within a singular query plan.  
 
2. Hybrid Database Architectures And 
Polyglot Persistence 
Research on polyglot persistence has become 
more popular as data systems have moved 
toward microservices and domain-driven 
architecture, the practice of mixing various 
specialized databases. A comparison of  various 
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features such as data retrieval complexity, cross-
model integration effort, query execution time, , 
storage overhead, and schema flexibility were 
examined on the multi-model databases and the 
polyglot persistence by Singh, N. (2020) [9].  The 
results indicate that in diverse datasets multi-
model databases shows better performance then 
polyglot persistence. Multi-model DBMSs 
diminishing latency, enhancing consistency, and 
streamlining application code across models by 
eliminating the burdens of inter-database 
communication, serialization, and 
transformation, thus utilize a singular storage 
backend more efficiently. 
Sandell et al. (2024) [10] demonstrated running 
connected-data queries along with experimental 
benchmarking on all three systems. For querying 
connected data, Neo4j performs better than 
ArangoDB. Neo4j surpasses both MySQL and 
ArangoDB based on their experiments, 
also ArangoDB multimodel benefits, did not show 
performance for  traversal connected queries in 
their benchmark. The article also recommends 
that multi-model systems such as ArangoDB can 
be used as additional research on optimizing, for 
connected-data searches, either via enhanced 
indexing or query planning. 
Belgundi et al. (2023) [6] analyze the capabilities, 
performance characteristics, and architectural 
benefits of ArangoDB as a native multimodel 
database that consolidates document, key–value, 
and graph models into a unified engine. The 
paper emphasizes that the database's cohesive 
architecture reduces architectural complexity in 
modern data-intensive applications, assessed 
from both theoretical and practical perspectives. 
Polyglot Database Design Method (PDDM) is a 
development of hybrid systems which Polyglot 
Database Design Method (PDDM)outlines a 
procedure systematically is developed 
by  Zdepski et al. (2020) [12]. The authors offers 
a methodical framework for creating 
applications established in the Polyglot Database 
Design Method (PDDM) via extensive study on 
heterogeneous database systems, that 
concurrently employ various database 
technologies. The rising requirement for 
contemporary systems to integrate relational, 
document, graph, key-value, and columnar 
databases into a cohesive design led to the 
creation of PDDM.  
 
3. Arangodb As A Unified Multimodel 
Database 
To facilitate the management of graph-
structured data, Mohamed et al. (2023) [13] 
introduce an enhanced access-control system 
that adapts the XACML (eXtensible Access 
Control Markup Language) framework. 

Conventional XACML is not capable of developing 
authorization rules based on graph-specific 
properties such as node types, relationships, path 
structures, or graph patterns, as it was 
predominantly designed for hierarchical or 
tabular data. This study offers a Graph-XACML 
modification to enable graph databases and 
graph-based systems to implement flexible, 
expressive, and standardized authorization 
policies, therefore bridging the existing gap. 
The purpose of this research is to provide a 
systematic methodology that can be used to 
migrate large monolithic relational databases 
into modern polyglot persistence systems that 
support multiple models. The authors address a 
problem that is becoming more and more 
prevalent, which is that when older systems store 
heterogeneous, semi-structured, and relational 
data in a single relational database management 
system (RDBMS), it can result in scalability 
challenges, rigid schemas, and performance 
bottlenecks. The methodological and tool-
supported technique that is proposed by the 
study is intended to serve as a means of dividing 
monolithic databases into a number of 
specialized NoSQL and SQL databases. 
This 2018 comparison study assesses four 
prominent graph databases AllegroGraph, 
ArangoDB, Neo4j, and OrientDB aimed at 
examining their performance, data models, query 
functionalities, and architectural features. The 
authors intend to assist developers and 
researchers in choosing a suitable graph DBMS 
according to workload specifications, scalability 
demands, and data model adaptability [15]. 
Recent studies, such as “Analysis of Native Multi-
Model Database Using ArangoDB” (2023), 
examined ArangoDB's capacity to consolidate 
several data models under a single framework. 
The authors discovered that ArangoDB’s native 
query execution engine, utilizing AQL’s graph 
joins and JSON management, surpassed polyglot 
architectures in mixed workloads. ArangoDB 
performs better on integration of relational and 
document databases whereas Neo4j excels in 
pure graph traversal speed in comparative 
analysis of Neo4j vs ArangoDB.  
To decrease latency in ArangoDB we can achieve 
that through optimizing query planner, by 
minimizing external joins, and by unifying 
indexing. On the other hand, PostgreSQL remains 
the dominant force when it comes to high-
frequency online transaction processing (OLTP) 
transactions, as ArangoDB's transaction model, 
although it adheres to the ACID standard, may be 
less efficient in this particular application. 
 
4. NLP For Query Translation And User 
Interaction 
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Integrating human language, multimodal 
database querying and schema design have made 
advancements in research. To use these advance 
technologies there are two approaches (a) 
natural langauge tools such as DBTagger, 
xDBTagger that derive schema or model intent 
from natural language to facilitate polyglot 
design and migration, and (b) systems that 
convert user queries to streamline access across 
diverse backends. The developer efforts are 
minimize by using these methodologies at both 
run-time and design-time. 
The simple language was transformed into 
relational schema in DBTagger (2021) which 
utilizes traditional NLP pipelines to discern 
potential entities, attributes, and connections. It 
demonstrated that structured information 
beneficial for conceptual modeling can be 
extracted with considerable accuracy from 
formal requirement documents, expediting the 
transition from conceptual to logical design.  
To classify textual artifacts as more suitable for 
document, graph, or relational models , 
xDBTagger (2022) [16] enhances this approach 
within the multimodel domain by employing 
embedded contexts and transformer 
components ; hence, it aids in model selection 
and element extraction. These systems 
collectively execute PDDM-style judgments 
concerning the suitable data model for each 
object and can be integrated into migration 
operations necessitating the segmentation of a 
monolithic schema into multiple storage options. 
Text2Cypher (2025) [17] illustrates the 
feasibility of semantic parsing for graph 
databases, showing that transformer-based 
NL→Cypher models can accurately convert user 
inquiries into executable graph queries for Neo4j, 
particularly for simple and moderately 
complicated intents. This enhances accessibility 
for non-expert users and is suitable for 
interactive analytics on knowledge graphs and 
social networks.  
MetaSQL (2024) [18] addresses the 
complementary issue of cross-model query 
abstraction by introducing a meta-language and 
middleware that disaggregates a singular meta-
query into subqueries for relational, document, 
and graph databases. MetaSQL seeks to maintain 
expressive capability (joins, nested access, 
traversals) while directing computation to the 
most suitable engine, hence alleviating developer 
cognitive burden in polyglot environments. 
There are a lot of common methodological 
patterns in all of these works. For example, they 
all use transformer embeddings or hybrid 
pipelines for robust natural language processing 
(NLP), mapping heuristics or alignment layers to 
turn natural language entities or relationships 

into schema artifacts, and middleware/optimizer 
components to manage decomposition and 
routing for cross-store queries. 
 
5. Machine Learning And Analytics In Library 
Systems 
The use machine learning (ML) and data 
analytics is increasing day-to-day library 
systems, which leads to advancement of digital 
collections and rise in user information 
requirements. Initial implementations 
concentrated on recommendation algorithms, 
with Qin, Chen, and Wang (2020) [20] illustrating 
that improvement of user engagement in 
academic libraries is possible due to machine 
learning-based recommender systems. Various 
ML techniques are included in this research such 
as collaborative filtering and content-based 
models to show enhanced borrowing behaviours, 
deliver personalized reading recommendations, 
service engagement. This study highlights that 
the personal learning experience and user 
satisfaction can be increased using machine 
learning. 
Machine learning plays important role beyond 
personalization, as well as in resource 
optimization and collection management. To 
forecast resource demand as well as circulation 
trends, predictive analytics have been used. 
Ikwuanusi et al. (2021) [19] applied machine 
learning algorithms such as random forest and 
support vector regression models to forecast 
usage trends and acquisition requirements, also 
libraries' efficiency enhances in budgetary and 
procurement decisions. The results show that 
machine learning can enhance library 
administration, availability of high-demand 
resources can be increased. 
Simultaneously, progress in natural language 
processing (NLP) has broadened prospects for 
the automation of technical services. Sarode et al. 
(2022) [21] demonstrated BERT-based NLP 
techniques for automation of metadata 
extraction and cataloguing.  Their methods 
illustrated how intelligent automation may boost 
essential backend activities in digital libraries 
and significantly enhanced metadata quality and 
reduced human processing time. 
Analytical insights into user behaviour have 
ultimately emerged as crucial tools for improving 
services. In Ansari et al. (2021) [22], the spatial 
usage of library resources, user visitor patterns, 
and borrowing behaviours are examined and 
their results shown improvement in library 
configurations, timetabling, and collection 
organization. The utilization of machine learning 
technologies has encouraged a growing trend 
towards evidence-based library management 
techniques. 
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These studies collectively demonstrate that 
services like recommendations and chatbots can 
be improved by machine learning and analytics, 
also enhance essential library processes such as 
cataloguing, resource planning, and behaviour 
analysis. Machine learning is becoming 
popular in libraries, but still issues with ethical 
data management, cross-library model 
generalization, and the combination of 
multimodal datasets (text, usage logs, and 
location data). The observed limitations provide 
possibilities for further research on unified, 
intelligent library management systems that 
employ machine learning across all service 
levels. 
 
6. Research Gap 
Few research shows the comparison of 
relational, document, and graph databases with 
native multimodel databases like ArangoDB. To 
fill this research gap, we developed a hybrid 
architecture made up of PostgreSQL, CouchDB, 
and Neo4j and compared it with ArangoDB 
database. It discusses trade-offs between 
integration complexity and query performance 
and conducts tests across CRUD, graph, and 
cross-model queries to assess performance, 
scalability, and consistency. Hybrid model 
integrated with NLP-driven query translation is 

still lacking. This study consists of comparison of 
both multi-model databases for real-world 
library dataset, evaluating performance metrics 
like execution time, indexing efficiency, 
throughput, and latency, and also addressing 
usability improvements from NLP integration. 
 
System Architecture & Methodology 
1. System Architecture For Arangodb And 
Hybrid Multi-Model Database 
The System architecture for ArangoDB and 
Hybrid Multi-model database consists of 4 layers 
as Presentation Layer, Application Layer, Data 
Access Layer, Data Storage Layer. The 
Presentation layer encompasses Library website 
where it consists of User interface and the APIs. 
The students, staff and librarians interact with 
the user interface and get the services through 
the APIs. The Application layer consists of the 
microservices, business logic and the 
middleware which is developed in 
Python/Django framework. The user can request 
through Data Access Layer where the services 
required can be written in form of simple English 
language which is further translated in AQL or 
SQL or cypher language. The Data Storage layer 
actually consists of the ArangoDB or Hybrid 
Model where the documents, records or graphs 
are stored. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: System Architecture for ArangoDB and Hybrid Multi-Model Database 
 
2. Data Model and Datasets for Library 
Information System 
A real-world digital library system data was 
collected which consists of following modules 

and the database model it implement in 
ArangoDB and Hybrid Multi-model Database. 
The dataset contained approximately 1.5 million 
records distributed across the three models 

Presentation Layer 

(User Interface and APIs) 

Presentation Layer 

 
Application Layer 

(Business Logic and middleware) 

Data Access Layer 

(NLP to AQL/SQL/Cypher) 
 

Data Storage Layer 

(ArangoDB/Hybrid Multimodel) 

 
Presentation Layer 
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Table 1: Data Models For Library Information System 
 

Module ArangoDB Hybrid 
User (Student and Teacher) 
Management  

Document + Graph (RDBMS for auth + Document for 
profiles) - PostgreSQL + Couch DB 

Supplier Module  Document (Document) - Couch DB 
Book Transaction Module  Document + Graph (RDBMS) - PostgreSQL 
Finance and Inventory module  Document (RDBMS) - PostgreSQL 
Teaching Material Module  Document + Graph (Document + Graph) - Couch DB + 

Neo4j 
Question paper and syllabus 
module  

Document (Document) - Couch DB 

Journal Module  Document (Document) - Couch DB 
Tie-ups Module  Graph (Graph) - Neo4j 
Search Lib Module  Graph (Graph) - Neo4j 
Review Module Graph (Graph) - Neo4j 
Feedback Module Graph (Graph) - Neo4j 

 
3. Query Formulation 
We designed several multimodel queries 
reflecting typical information retrieval and 
analytical tasks in the library systems: 

 Relational Aggregations (e.g., borrowing 
counts, department-level trends). 

 Document Retrievals (e.g., supplier 
feedback, journal metadata). 

 Graph Traversals (e.g., student friendship 
networks, faculty–institution 
relationships). 

 Cross-Model Queries combining two or 
more database paradigms. 

The user writes the natural language query as 
“Get materials provided by suppliers and 
check which users have liked them” and then 
decomposed into two paradigms as: - 
a. Hybrid Model Queries distributed across 
PostgreSQL, CouchDB, and Neo4j. 

 CouchDB → Get materials and supplier 
documents. 

 Neo4j → MATCH (u:User)-[:LIKED]-
>(m:Material). 

b. ArangoDB AQL Queries integrating all models 
within a single execution. 
FOR m IN Materials 
  FOR u IN Users 
  FILTER m._key IN u.liked_materials 
  RETURN {material: m.title, liked_by: u.name} 
This allowed us to test both usability and 
performance (execution time). 
 
4. Indexing methods 
Indexes were carefully designed to optimize 
query execution across systems: 

1. PostgreSQL uses B-tree indexes and 
materialized views as an index. 

2. CouchDB uses JSON Mango indexes for 
structured attributes and for keyword 

searches it uses MapReduce functions as a 
part of indexing. 

3. Neo4j has Label and property indexes and 
adjacency list indexing for graph 
traversals. 

4. ArangoDB has Hash and skiplist indexes 
for structured queries as well as  inverted 
indexes for text search and edge indexes 
for graph traversals. 

This ensured that neither system was 
disadvantaged by poor indexing design. 
 
Implementation 
The proposed library information system was 
developed and tested on a system with the 
following configuration: an Intel Core i5 10th 
Generation processor, 8 GB of RAM, 1 TB storage, 
and a high-speed internet connection. The 
database consists of approximately 20 million 
records, amounting to a total size of around 200 
GB. The backend of the system was implemented 
using Python (version 3.12.0) and the Django 
web framework (version 5.2), enabling rapid 
development and secure data handling. The 
frontend was created using HTML5 and CSS3, 
ensuring a responsive and user-friendly 
interface. Data storage and querying were 
handled using ArangoDB (version 3.11.8 for 
Windows 64-bit), a multi-model NoSQL database 
supporting document, key-value, and graph data 
models. Development was carried out on a 
Windows operating system using Visual Studio 
Code (VS Code) as the primary Integrated 
Development Environment (IDE). The Python 
code was executed using the CPython 
interpreter, the default compiler for Python, 
ensuring efficient runtime performance and 
compatibility with Django and ArangoDB 
integrations. 
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To develop a web-based application using Django 
(Python) with ArangoDB and hybrid model as a 
multimodel backend, the setup involves multiple 
stages. Initially, essential tools must be installed 
including Python, Django, and the ArangoDB as 
well as Postgresql, CouchDB and Neo4j server. 
Django can be installed via pip, and ArangoDB 
can be installed either locally or through Docker 
for containerized environments.  The same 
environment is used for Postgresql, CouchDB and 
Neo4j. Once installed, a new Django project is 
created using django-admin, followed by creating 
an app (e.g., library_app). A connection between 
Django and ArangoDB is established using the 
python-arango driver by defining a connector 
function that authenticates and returns a 
database instance. Also, connection is set for 
Postgresql, CouchDB and Neo4j. 
The application logic is implemented inside 
Django views. A function is created that connects 
to the database and inserts a JSON-like document 
into the respective collection. This function is 
mapped to a URL route and invoked via an HTTP 
request. URL routing is configured in both the 
app-level and project-level urls.py files. Once the 
server is started using python manage.py 
runserver, the endpoint can be tested in the 
browser or using tools like Postman. Finally, the 
user have to log in to ArangoDB's web interface 
(default port 8529), open Postgresql, connect 
CouchDB and Neo4j to verify that the data is 
properly stored. This flow enables seamless 

integration between Django-based frontends and 
the backend. 
 
Evaluation Metrics 
To capture performance differences 
comprehensively, we employed the following 
metrics: 

1. The average runtime for each query under 
identical conditions is measured by 
execution time. 

2. Delay before query execution begins is 
measured by latency, which is particularly 
useful in hybrid models because of query 
parsing and network overhead. 

3. Number of queries executed per second is 
measured by throughput in 
operations/per second under concurrent 
workloads. 

4. To reduce query complexity as well 
as improving runtime the Effect of 
selected indexes is used by Indexing 
Effectiveness. 

5. Observations regarding the better 
performance of each system can be 
measured by Observational Analysis.  

 
The table below includes execution time, index 
use, and observations as the performance 
evaluation of the hybrid and ArangoDB models. 
For the workloads of academic library systems, 
this comparison significantly helps to evaluate 
the efficiency and optimization potential of each 
database. 

 
Table 2: Comparative Performance Evaluation For Hybrid And Arangodb Model. 

 
Query (Natural 
Language) 

Queries (DB-specific) Hybrid 
Time 
(sec) 

ArangoDB 
Time (sec) 

Indexing 
Used 

Observations 

Find all 
materials tagged 
with keywords 
users are 
interested in and 
enrolled in 
institutions. 

CouchDB → get materials 
with tags.Neo4j → USER -
[:INTERESTED_IN]-> 
Keyword.PostgreSQL → 
check enrollment. 

0.48 0.22 

CouchDB 
JSON index, 
Neo4j label 
index, 
PostgreSQL 
B-tree. 

ArangoDB faster: 
joins in AQL avoid 
cross-DB 
overhead. 
 
 

List all students 
who borrowed 
books and also 
submitted 
feedback. 

PostgreSQL → borrow 
records.CouchDB → 
feedback docs by 
student_id. 

0.40 0.18 

Postgres B-
tree on 
student_id, 
CouchDB 
Mango 
index. 

ArangoDB 2 times 
faster; hybrid 
suffers network 
overhead. 

Get materials 
with suppliers 
and check which 
users have liked 
them. 

CouchDB → get materials 
& suppliers.Neo4j → 
USER -[:LIKED]-> 
Material. 

0.41 0.20 

CouchDB 
MapReduce, 
Neo4j 
property 
index. 

ArangoDB wins: 
doc+graph 
handled in single 
query. 
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List faculty 
teaching at 
institutions 
where students 
borrowed books. 

PostgreSQL → borrowed 
books + institution.Neo4j 
→ FACULTY -
[:TEACHES_AT]-> 
Institution. 

0.50 0.25 
Postgres B-
tree, Neo4j 
label index. 

ArangoDB faster: 
native 
graph+relational 
join. 

Retrieve top 10 
most borrowed 
books per 
semester. 

PostgreSQL → aggregate 
borrow counts, group by 
semester. 

0.33 0.95 

PostgreSQL 
B-tree + 
materialized 
view. 

Hybrid 
outperforms: 
PostgreSQL 
optimized for 
aggregation. 

Detect student 
communities 
based on 
borrowing 
patterns. 

Neo4j → project 
STUDENT -
[:BORROWED]-> BOOK, 
run Louvain clustering. 

0.35 1.50 
Neo4j 
adjacency 
list index. 

Hybrid wins: 
Neo4j clustering 
better than 
Arango. 

Identify users 
who borrowed 
journals and 
provided 
feedback. 

PostgreSQL → journal 
borrow records.CouchDB 
→ feedback docs. 

0.42 0.21 

Postgres B-
tree, 
CouchDB 
Mango 
index. 

ArangoDB 2 times 
faster: fewer 
round-trips. 

Find teachers 
who 
recommended 
books that 
students 
borrowed. 

Neo4j → TEACHER -
[:RECOMMENDS]-> 
BOOK.PostgreSQL → 
borrow records. 

0.45 0.28 

Neo4j label 
index, 
PostgreSQL 
B-tree. 

Hybrid slightly 
slower: Arango 
integrates edges + 
docs. 

Rank suppliers 
based on most 
borrowed 
materials. 

CouchDB → supplier-
material 
mapping.PostgreSQL → 
borrow counts. 

0.47 0.30 

CouchDB 
MapReduce, 
PostgreSQL 
index. 

Hybrid slower due 
to split 
aggregation. 

Get students 
who borrowed 
same book and 
are friends. 

PostgreSQL → borrow 
records.Neo4j → 
FRIENDS_WITH graph. 

0.44 0.26 

PostgreSQL 
index, Neo4j 
relationship 
index. 

ArangoDB faster 
for doc+graph 
join. 
 

Find average 
rating for each 
book. 

Neo4j → 
ratings.PostgreSQL → 
book IDs. 

0.38 0.34 

Neo4j 
property 
index, 
PostgreSQL 
B-tree. 

Nearly same, 
slight edge to 
hybrid (optimized 
aggregations). 

Detect 
institutions with 
highest number 
of enrolled 
students. 

PostgreSQL → count 
students grouped by 
institution. 

0.30 0.80 
PostgreSQL 
B-tree. 

Hybrid faster: 
pure SQL 
aggregation better 
than Arango. 

Find students 
who borrowed 
materials 
outside their 
enrolled 
institution. 

PostgreSQL → enrolled 
institution. PostgreSQL → 
borrow records.  

0.55 0.40 
PostgreSQL 
B-tree. 

ArangoDB faster 
due to unified join 
query. 

Identify trending 
topics from user 
feedback tags. 

CouchDB → aggregate 
tags. 

0.60 0.25 

CouchDB 
MapReduce 
vs Arango 
inverted 
index. 

ArangoDB wins 
with full-text + 
inverted index. 

 List users who 
liked and 
borrowed the 
same material. 

Neo4j → USER -[:LIKED]-
> MATERIAL.PostgreSQL 
→ borrow. 

0.47 0.23 

Neo4j label 
index, 
PostgreSQL 
B-tree. 

Arango faster: join 
inside one AQL 
query. 
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Faculty feedback 
sentiment on 
journals. 

CouchDB → text 
feedback.Python 
sentiment analysis 
external. 

1.20 0.95 

CouchDB 
text index, 
Arango 
inverted 
index. 

ArangoDB slightly 
better due to built-
in text search. 

Track borrowing 
trends per 
department. 

PostgreSQL → join 
borrow + department. 

0.36 0.85 
PostgreSQL 
index on 
department. 

Hybrid better: SQL 
analytic functions 
outperform. 

Identify users 
who gave both 
high ratings and 
negative 
feedback. 

Neo4j → ratings > 
4.CouchDB → feedback 
sentiment negative. 

0.66 0.42 

Neo4j 
property 
index, 
CouchDB 
text index. 

Arango faster: 
unified filter. 

Suggest books 
based on co-
borrowing 
patterns. 

Neo4j → link prediction / 
similarity. 

0.55 1.80 
Neo4j graph 
projection. 

Hybrid wins: 
Neo4j ML better 
optimized. 

Faculty 
collaboration 
based on co-
teaching. 

Neo4j → detect FACULTY 
-[:TEACHES]-> COURSE. 

0.40 1.60 
Neo4j 
relationship 
index. 

Neo4j faster, 
Arango slower on 
large graph. 

Students who 
borrowed >10 
books in a 
month. 

PostgreSQL → aggregate 
borrow counts. 

0.28 0.65 
PostgreSQL 
B-tree. 

Hybrid faster: SQL 
aggregation. 

Match suppliers 
with top-rated 
books. 

CouchDB → suppliers. 
Neo4j → ratings > 
threshold. PostgreSQL → 
books. 

0.50 0.33 

CouchDB 
MapReduce, 
Neo4j 
property 
index. 

Arango faster: 
multi-model 
advantage. 

Students 
borrowing e-
materials vs. 
print materials. 

PostgreSQL → filter 
borrow by type. 

0.27 0.70 
PostgreSQL 
B-tree. 

Hybrid better: SQL 
query simpler. 

Detect 
communities of 
students using 
both friendships 
and borrowing 
overlaps. 

Neo4j → community 
detection on combined 
graph. 

0.65 1.90 
Neo4j 
adjacency 
list index. 

Hybrid better: 
Neo4j specialized. 

Predict student 
dropout risk 
using borrowing 
inactivity. 

PostgreSQL → student 
enrollments. Neo4j → 
activity patterns. 

0.80 0.60 
Postgres B-
tree, Neo4j 
label index. 

Arango faster: 
combines doc + 
graph + time-
series. 

 
Results and Discussion 
The comparison of ArangoDB and the Hybrid 
multimodel architecture demonstrate that the 
features such as efficiency, consistency, and 
scalability associated with complicated data 
management are highly affected due to 
integration in digital library systems. 
In the literature review of Multi-model and 
polyglot persistence most authors states that 
multi-model performs better than polyglot 
persistence, but Sandell et al. (2024) [10] states 
that Neo4j performs better in graph traversal 
than ArangoDB. Hence we can say that, 
PostgreSQL, CouchDB, and Neo4j performed 

satisfactorily in their respective domain in the 
Hybrid model. In Fernandes, D., & Bernardino, J. 
(2018), authors intend to assist developers and 
researchers in choosing a suitable graph DBMS 
according to workload specifications, scalability 
demands, and data model adaptability [15]. 
Neo4j represented relationships and interactions 
between data successfully, unstructured and 
semi-structured data CouchDB managed 
efficiently, and reliable transactional data by 
PostgreSQL. But the reason for lacking behind is 
the Inter-database communication overhead. 
The complexity and latency of each multimodel 
query were enhanced if there is coordination 
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between three engines, middleware 
synchronization, and proper data format 
conversions between JSON, SQL, and Cypher. The 
comparative evaluation between ArangoDB and 
the Hybrid multimodel architecture highlights 
how architectural integration impacts the 
efficiency, consistency, and scalability of complex 
data management in digital library systems. In 
this research paper the efficiency is considered 
with respect to execution time required for the 
query from natural language to showing the 
execution output. 
Conversely, the integrated architecture 
of ArangoDB eliminates the necessity for such 

coordination between the document, graph, key-
value databases. The results shows that query 
latency was reduced and throughput was 
enhanced by integration of document, graph, and 
key-value models under a unified query language 
called as (AQL). The system executed multimodel 
joins directly within one engine, eliminating 
network transfers and costly transformations. 
This approach rendered ArangoDB especially 
effective for cross-model AQL queries, the 
correlation of user interests, materials, and 
enrollment data. 

 

 
 

Figure 2 : Query Execution Time for ArangoDB and Hybrid Multimodel Database 
 

As shown in above Figure 2, ArangoDB shows its 
results of evaluation criteria such as execution 
time better than the Hybrid model which is 47% 
for execution time and 42% in throughput, 
especially in document–graph queries. The 
separate indexing mechanisms in the Hybrid 
approach decreases its indexing structure 
compared to ArangoDB when it accesses paths 
for mixed workloads. However, the Hybrid 
system advantageous in transactional control 
and recovery due to PostgreSQL’s ACID 
compliance and Neo4j’s mature graph traversal 
algorithms. 
User accessibility is significantly enhanced by 
integrating Natural Language Processing (NLP) 
in the both systems. Queries written in simple 
English such as “Find the Students who borrowed 
>10 books in a month” submitted by user were 
automatically translated into database-specific 
commands. This approach reduced the cognitive 
load on non-technical users and enabled 
inclusive data exploration. In ArangoDB, use of 
NLP was more advantageous since AQL allowed 

mixed-model querying directly, while query 
segmentation and mapping was required across 
three databases in the Hybrid system. 
Overall, the Hybrid model remains advantageous 
for data integrity, modular design, and 
transactional workloads, while ArangoDB 
demonstrates superior performance in real-time 
analytics, graph-document integration, and 
usability. 
 
Conclusion 
This research shows the ArangoDB‘s ability in 
reducing execution time and lowering data 
movement overhead in processing document, 
graph and relational data in a single AQL query. 
Also, the research shows the detailed 
comparative performance between ArangoDB 
and a Hybrid multimodel database system for 
implementing the Library Information System 
(LIS). The results of features such as cross-model 
query performance, integration simplicity, and 
scalability shown by ArangoDB, being a native 
multimodel system, offers substantial benefits. 
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In contrast, the Hybrid architecture, offers 
superior transactional consistency and modular 
control but contains increased query latency. The 
systems which requires high dependability, 
structured data management, and graph 
analytics where specialized engines can be 
optimized independently are the suitable 
scenarios where hybrid model can be used. 
The results shows that hybrid model in library 
domain such as book borrowing and supplier 
invoicing has 20% better consistency in 
processing heavy transactions than ArangoDB, 
but  ArangoDB demonstrated up to 47% lower 
execution time and 42% higher throughput for 
integrated workloads.  
The integration of NLP-driven query translation 
successfully bridged the gap between user intent 
and technical execution, demonstrating that 
database complexity can be hidden from end-
users while maintaining system intelligence. 
In conclusion, ArangoDB is more effective for 
unified, multimodel workloads with mixed data 
types and user-driven analytics, while the Hybrid 
model is optimal for modular, transaction-
intensive, and distributed designs. Both 
approaches have complementary strengths and 
can potentially coexist in future hybridized 
intelligent systems. 
 
Future Enhancements 
Future work can include various ML algorithms 
within Neo4j and ArangoDB supporting 
recommendations for books, journals, or 
suppliers. Expanding NLP capabilities using 
Large Language Models (LLMs) like GPT or BERT 
can enable semantic understanding and intent-
based query rewriting, making user queries even 
more natural and adaptive. A new multi-model 
could be developed to allow real-time 
synchronization between ArangoDB and the 
Hybrid databases, combining ArangoDB’s 
integration strengths with PostgreSQL’s 
transactional robustness. Scale the current 
dataset to hundreds of millions of records using 
distributed environments (Hadoop/Spark 
connectors) to validate the scalability of 
ArangoDB’s cluster architecture versus a 
distributed hybrid stack. We can further also 
implement unified access control policies and 
encryption mechanisms to ensure data security 
across multimodel systems. 
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