

Archives available at journals.mriindia.com

International Journal on Advanced Computer Theory and Engineering

ISSN: 2319 - 2526

Volume 15 Issue 01s, 2026

Artificial Intelligence Based Argumentation Framework for Critical Thinking Development

Tanvi Shah

*Department of Technology, Savitribai Phule Pune University, Pune, 411007.**Email: tanivshah1511@gmail.com*

Peer Review Information	Abstract
<i>Submission: 08 Dec 2025</i>	In academic, professional, and civic contexts, the development of critical thinking and reasoning skills are essential. Despite the success, traditional debate-based education methods have drawbacks such limited scalability, subjective evaluation, and teacher availability. The development of AI-powered argumentation training systems that provide adaptive feedback, replicate various debate scenarios, and thoroughly evaluate student progress has been made possible by recent advancements in artificial intelligence (AI). In the present works, methods, effectiveness, and limitations of the current research on AI-enabled systems are examined. The application software examines problems with system design, evaluation, and accessibility while highlighting current trends and pointing out weaknesses in existing methods. The application software will help to impact future research directions and result in the development of more efficient, scalable, and customized critical thinking tools.
<i>Revision: 25 Dec 2025</i>	
<i>Acceptance: 10 Jan 2026</i>	
Keywords	
<i>Artificial Intelligence (AI), Argumentation Training Systems, Critical Thinking Development, Adaptive Learning, Debate-Based Education.</i>	

Introduction

Effective decision making, problem solving, and informed citizenship all depend on critical thinking. These skills have long been developed through traditional debate and argumentation training methods, but they often face challenges including limited accessibility, subjective evaluation, and inconsistent feedback. AI-powered argumentation training systems are one of the new solutions that have emerged because of artificial intelligence's (AI) explosive growth. Many of the drawbacks of conventional teaching methods are eliminated by these technologies, which can mimic different debating environments, provide real-time and adaptive feedback, and rigorously measure student development.

AI Argument Analyst, can effectively provide feedback on key elements of an argument, including the claim, evidence presented, and counter-arguments [1]. Enhancing critical thinking especially among students with low

levels of argumentation in the present educational method should be utilized extensively to develop critical thinking skills [2]. The ability to learn or acquire fundamental knowledge and concepts in a variety of domains, including problem solving, critical thinking, creative thinking, and decision-making, is referred to as learning skills [3]. There are different skills including the practical skills for the developers to utilize and apply in evaluating it into accurate results. Framework for Natural Language that combines BiLSTM for context sequence and RoBERTa for embedding extraction modelling [4]. AI system is that the foil is not always explicit so contrastive explanations within framework by combining acceptance and non-acceptance and the knowledge of conflicting arguments and contraries in the case of an implicit foil [5]. AI can improve critical thinking skills, including academic research and theoretical scrutiny, according to students. However, issues with AI's shortcomings were

also brought up, such as its inability to be personalized, its propensity to create echo chambers, and its challenges with subtle comprehension [6]. AI in the academics is such helpful invention that, since 2022, studies relating the application of artificial intelligence (AI) in education to concerns about the development of critical thinking have surfaced in the academic community [7]. Argumentative capabilities are vital for both personal and professional contexts [8]. The correlation between the use of AI tools and critical thinking skills, with an emphasis on cognitive offloading as mediating feature [9]. Especially in the context of regular classroom instruction, science argument mapping offers fresh approach to research and thinking that can help foster critical thinking. It might utilize to help students' development and their critical thinking skills [10]. AI-based solutions can standardize evaluation and lessen the biases present in human judgment in addition to fostering critical thinking. The application software uses method from knowledge representation, machine learning, and natural language processing to accurately analyze the logic, structure, and persuasiveness of arguments. Critical thinking, the ability to examine, evaluate, and synthesize information to make informed judgements, were the crucial cognitive talent for academic success, professional competence, and informed citizenship [11].

Literature Review

Recent research has increasingly explored the role of artificial intelligence in fostering critical thinking and argumentation skills across educational contexts. Studies such as Lawasi et al., [15] and Saddhono et al., [21] highlight AI's potential to enhance analytical reasoning and reflective learning, particularly by supporting structured thinking and literacy development in the digital era. Several works have focused on AI-driven debate and discussion systems, with Manzocco et al., [16] presenting an AI-powered debate bot designed to encourage intercultural dialogue and critical reasoning, while De La Puente et al., [17] and Palupi et al., [20] investigate the use of ChatGPT in debate-based and computational learning environments, reporting improvements in engagement and argumentative awareness. In parallel, Bodrick et al., [18] emphasize the importance of structured argument construction in postgraduate education, reinforcing the need for systems that support reasoning processes rather than surface-level responses. Oiva-Córdova et al., [19] further examine generative AI as a facilitator of higher-order thinking, noting both its promise and the

necessity for transparent evaluation mechanisms. While these studies demonstrate the growing adoption of AI for critical thinking development, many rely on black-box models that provide limited insight into how evaluative decisions are made. Addressing this gap, Sanches et al., [22] introduce the Argumentative Rule-Based Explanatory Framework (AREF), which enables interpretable reasoning through formal argumentation rules. Building upon these foundations, the present work situates Debate Coach as an integrative framework that combines ensemble machine learning with argumentation-based explanation to support transparent, scalable, and pedagogically meaningful debate evaluation. Unlike prior systems that focus primarily on outcome-based assessment, Debate Coach emphasizes explainability and reasoning alignment, responding directly to the limitations identified in existing AI-assisted critical thinking tools [16,17,19,23].

Alternative implementation strategies, including interactive discussion simulations, automated argument scoring, and personalized feedback generation, can possible the subject of numerous studies. The application software runs the knowledge-based AI-enabled argumentation systems. It looks at existing approaches, assesses their efficacy, and pinpoints the field's shortcomings and problems. This study aims to direct future research and inform the creation of more efficient, scalable, and accessible tools for promoting critical thinking and argumentation abilities by critically examining trends and possibilities. The primary objective of this study is to present the design, computational architecture, and explainability mechanisms of the proposed Debate Coach framework rather than to report validated educational outcomes. Accordingly, the current version of the system is evaluated in terms of functional feasibility, internal consistency, and interpretability of outputs, rather than empirical measurement of student learning gains. Quantitative system-level indicators, such as ensemble prediction agreement and structured argument relevance scoring, are used to demonstrate computational coherence. Comprehensive empirical evaluation involving controlled user studies and learning outcome analysis is reserved for future work.

Methodology

For the complete assess in the body of research on AI-based argumentation training systems and systematic literature search was carried out across several scholarly databases, including Scopus, Web of Science, IEEE Xplore, and Google Scholar. This method is supported by earlier

research: He, Yankun et al., [12]; Hou, Chenyu et al., [13] demonstrate how well GenAI captures cognitive advances using guided inquiry models, while Jimenez et al., [14] emphasize the value of integrating data types to evaluate its educational impact. "AI in argumentation," "argumentation training system," "critical thinking AI," and "automated debate evaluation" were among the search terms used. Both foundational works and recent developments in the field were included in the selection of publications from 2022 to 2025. The selection process complied with established inclusion and exclusion standards. Included were peer-reviewed publications that offered empirical assessments or conceptual frameworks pertinent to debate training and concentrated on AI-enabled systems for the development of argumentation or critical

thinking. Research unrelated to AI-driven educational interventions, opinion articles lacking experimental support, and non-English papers were not included. Using titles and abstracts, a vast number of publications were selected from the initial search. After that, pertinent papers were sent for full-text review to make sure they fit the research.

The screening and selection procedure can be graphically represented with PRISMA-style diagram, which shows the number of studies found, reviewed, rejected, and ultimately included in the review. A strong foundation for further discussion and critical analysis is laid by this method, which offers transparency, reproducibility, and clear understanding of how the material was gathered, screened, and examined.

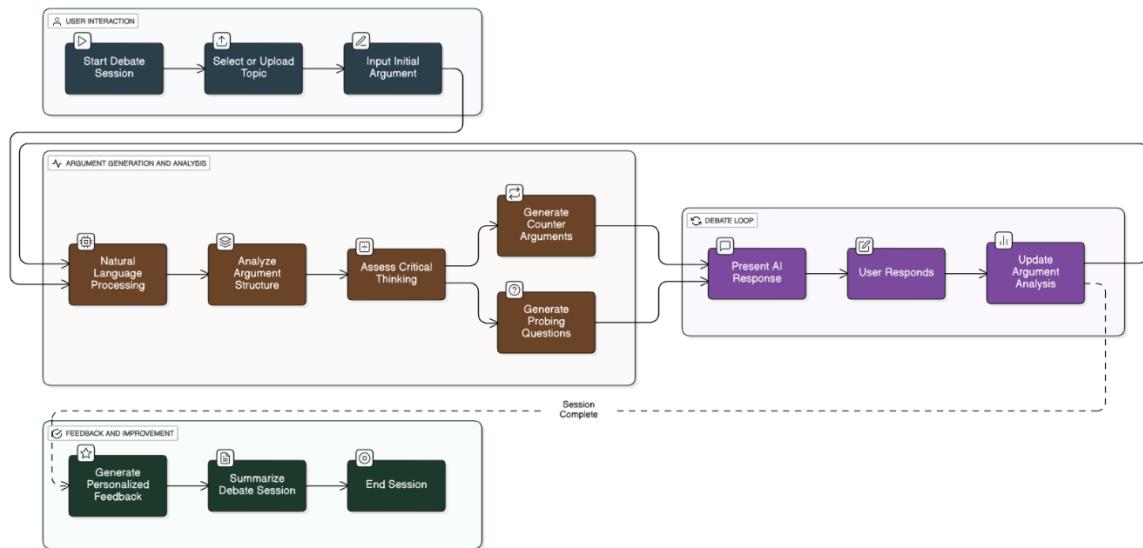


Figure 1. A methodological representation of the application software.

Proposed System

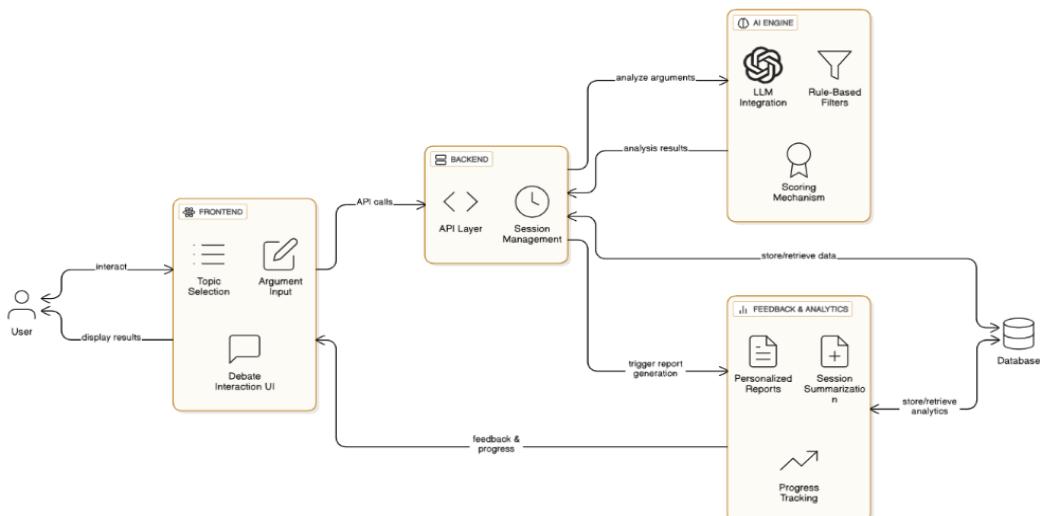


Figure 2. A Structural representation of the proposed system.

This study adopts design-oriented research approach, where insights derived from the literature review directly inform the development of the proposed Debate Coach framework. Rather than functioning as fully evaluated system study, the present system helps to integrates existing AI-based critical thinking tools with the presentation of conceptual and computational framework that addresses identified limitations, particularly in explainability and reasoning transparency. The proposed solution is an AI-powered Debate Coaching Framework that integrates organized reasoning and critical thinking skills to foster their development. Argumentation theory, natural language processing, and interactive learning techniques. The system is built as full-stack web application with modern frontend interface, scalable backend architecture, and an advanced AI engine that creates and evaluates arguments.

System Architecture Overview

The architecture of the proposed AI-powered Debate Coaching Framework is illustrated in Fig. 2.

1) User Interaction Layer: Built with React.js to deliver a responsive and captivating user experience, it provides modules for selecting topic, inserting arguments, and having discussion. It has dynamic user interface components for real-time counter-arguments, probing questions, and updated analysis. ensures cross-device interoperability and accessibility.

2) Backend Processing Layer: It was created to manage authentication, session management, request routing, and communication with the AI engine. Python for efficient API connection using frameworks like Flask and Fast API. keeping user arguments, session records, and feedback analytics in secure databases.

3) AI Argumentation Engine: The AI Argumentation Engine incorporates Advanced Large Language Models (LLMs) to perform a range of reasoning tasks. Essential for the creation and analysis of organised debates. These models extract claims and premises, identify the logical structure of user arguments, and identify tone and posture to understand the user's position within the conversation situation. Furthermore, the engine generates perceptive questions and counterarguments that are grounded in context and promote deeper reflection and critical engagement. The system enhances the LLM's raw outputs and ensures logical reasoning by using special rule-based filters and reasoning templates. Consistency to maintain relevance and accuracy. Additionally, a

scoring system evaluates crucial critical thinking indicators including fallacies, coherence, clarity, and the use of evidence. This allows the system to objectively analyse the calibre of arguments and make it easier to create customised feedback.

4) Feedback and Analysis Module: This part generates personalised reasoning reports that highlight strengths and weaknesses as well as areas for improvement. Additionally, uses discussion sessions can be summarised using abstractive and extractive summarisation approaches. By monitoring user progress over time, it enables customisable learning routes.

Dataset Description

The dataset used in this study was taken from an open-source repository on Kaggle and included annotated argumentative text samples from debate forums, opinion pieces, online chats, and academic reasoning as signatures. Because every record in the dataset has structured labels that specify claims, premises, counterarguments, and supporting evidence, the model is able to learn particular argumentation patterns. and polarity of position. The collection also provides metadata, such as topic category, argument length, sentiment orientation, and logical mistake indicators, that facilitate linguistic and structural analysis. These annotations allow the dataset to be utilised for training and assessment tasks such as claim extraction, premise identification, posture recognition, and critical thinking evaluation. The diversity of topics and writing styles in the dataset ensures that the AI Debate Coaching Framework generates dependable, context-aware reasoning outputs that perform well in range of debate scenarios.

The dataset's comprehensive coverage of argumentative discourse components is exactly in line with the functional requirements of the proposed AI Debate Coaching Framework. The dataset's well labelled assertions, premises, attitudes, and counterarguments allow the model to learn the structural patterns required for automated argument analysis. By incorporating a range of themes and writing styles, the system boosts resilience and reduces bias, ensuring that it can generalise across different debate scenarios and user inputs. The dataset also contains sentiment, logical fallacies, and evidence usage metadata, which aids the machine in evaluating the critical thinking and reasoning quality indicators. Because the dataset is well-curated and publicly accessible, it ensures repeatability, openness, and ease of integration into machine learning pipelines. Because it offers both methodological and practical advantages, these aspects make the dataset an appropriate

and reliable resource for training and evaluating the proposed framework.

Algorithm Overview

The core of the suggested system consists of transformer-based Large Language Models (LLMs), which use self-attention processes to process argumentative text, extract assertions and premises, determine attitude, and generate counterarguments and probing enquiries. The LLM outputs are refined by rule-based reasoning layer that uses argumentation heuristics and fallacy-detection patterns to ensure logical consistency and relevance. Critical thinking measures including coherence, the use of evidence, and structural clarity are also evaluated by heuristic scoring algorithms. The underlying LLMs are trained using Reinforcement Learning from Human Feedback (RLHF) principles, which enable the system to provide responses that are both pedagogically and contextually appropriate.

Results and Discussion

This section of Framework Implementation and Illustrative Analysis describes the explanations generated by the Debate Coach framework depending on different input factors. And focusing on system behavior, explanation generation, and user interaction flow. The discussion emphasizes how the proposed architecture operationalizes argument evaluation and explainability in practice. The presented screenshots and examples are intended to demonstrate functional realization of the framework rather than to report empirical performance metrics or experimental learning outcomes. It is important to emphasize that the focus here is not on assessing the performance metrics of machine learning (ML) prediction models such as accuracy and precision. The objective is to evaluate the quality and applicability of explanations derived from the Debate Coach framework in relation to certain input parameters. This work presents examples of explanations for different contexts, classes, and datasets. Present data sheds important light on Debate Coach AI affects college students'/ users' capacity for critical thought. Along with key findings from the computational study are shown in this part, along with qualitative insights gleaned from interaction data and quantitative measures derived from machine learning models. Through supervised debate-based learning, the proposed system, Debate Coach, is an interactive platform driven by artificial intelligence that seeks to enhance students' critical thinking and argumentation skills. The Debate Coach system encourages a constructive

relationship between artificial intelligence and human intelligence by combining AI debate generation, language analysis, and tailored feedback. It transforms traditional debate instruction into a flexible, data-driven program aimed at fostering the higher-order thinking skills required of today's students.

Real-Time Examples from Debate Coach AI (DCAI)

Example: Online Classes Experience

Debate Topic: *Online Classes Experience*

AI Prompt: *"Many students lack discipline in a remote setup."*

Learner Response: "While online classes reduce physical supervision, they offer flexibility and recorded resources that help motivated students manage learning effectively."

Descriptive Statistics:

In the Online Classes classroom argument context, the learner received the prompt with statement *"Many students lack discipline in a remote setup."* The evaluation results for every student in both experimental setups are displayed in Figure a to d. The screenshots of the application software Debate Coach are provided below. In the submitted response, flexibility and access to recorded resources were highlighted as enabling features for self-regulated learners, acknowledging the criticism while offering an alternative viewpoint. After analysing the response, the Debate Coach AI (DCAI) framework found crucial argumentative traits such as clear claim articulation, logical coherence, balanced acknowledgement of opposing viewpoints, emotional neutrality, and neutral analytical tone. These features were encoded and evaluated by set of machine learning classifiers. To ensure explainability, the Argumentation Reasoning and Explanation Framework (AREF) activated symbolic explanatory argument with the premises Logical Consistency and Balanced Reasoning, leading to the conclusion Strong Argument. This explanation demonstrates that the learner's response directly addressed the prompt, presented a reasoned counter-argument without discounting the initial worry, and avoided emotionally charged or anecdotal language. By explicitly linking the classification outcome to identifiable reasoning components, the framework allows learners to understand the underlying factors that influence the evaluation, promoting reflective learning and the development of critical thinking skills rather than providing an opaque numerical score.

Real-Time Argument Evaluation Example:

The submitted response acknowledged the concern while giving a counter-argument, emphasising flexibility and availability to recorded resources as enabling aspects for self-regulated learners. The Debate Coach AI (DCAI) system extracts a feature vector after processing the response.

$$X = [c, l, b, e, t]$$

Where c denotes claim clarity, l represents logical consistency, b indicates balanced counter-perspective acknowledgment, e captures emotional bias, and t denotes tone neutrality. For this instance, the extracted values satisfied

$$c = 1, l = 1, b = 1, e = 0, t = 1$$

The encoded feature vector X was evaluated by an ensemble of machine learning classifiers $\{M_1, M_2, \dots, M_7\}$, each producing an independent class prediction y_i .

The final classification outcome was determined via consensus,

$$y = \text{mode}(y_1, y_2, \dots, y_7),$$

Resulting in the prediction of a high-quality argumentative response, to ensure interpretability, the Argumentation Reasoning and Explanation Framework (AREF) mapped the predicted class y to a symbolic explanatory argument α_j of the form

$$\alpha_j : \{l, b\} \rightarrow \text{Strong Argument.}$$

This argument was selected because the premises l and b were both present in X and aligned with the predicted class. The generated explanation indicates that the response directly addressed the AI prompt, incorporated a reasoned counterpoint, and maintained emotional neutrality. By explicitly linking the prediction y to identifiable argumentative features through α_j , the DCAI framework provides transparent and pedagogically meaningful feedback, enabling learners to understand why an argument was evaluated as effective rather than receiving an opaque numerical score.

Debate Coach creates an environment for students to think rationally as it is score based and it is an essential part for the cognitive growth. Using Natural Language Processing (NLP) and Large Language Models (LLMs), the system mimics live conversations, requiring

students to defend, edit, or reevaluate their ideas in response to AI-generated counter-arguments. Students can critically evaluate opposing views in addition to elucidating their own ideas through this dynamic exchange, which is crucial for the development of analytical thinking. Whereas the core of the system is the AI engine. It analyses user comments using natural language processing (NLP) tools like SpaCy and NLTK, and it generates intelligent counterarguments using a GPT-based language model. Important criteria like logical structure, coherence, clarity, and evidence-based reasoning are the focus of the study. The system offers context-aware feedback based on this assessment, which includes recommendations for strengthening arguments, correcting logical errors, and enhancing persuasiveness.

The proposed Debate Coach framework exhibits consistent computational workflow for processing argumentative inputs across multiple debate topics. The ensemble classification strategy provides stable prediction outcomes by aggregating decisions from multiple models, thereby reducing individual classifier bias. The Argumentation Reasoning and Explanation Framework (AREF) effectively associates predicted argument quality classes with structured explanatory rules derived from the argumentation knowledge base. The generated explanations remain aligned with established argumentation theory by explicitly identifying logical coherence, balanced reasoning, and emotional neutrality as dominant evaluative factors. These observations indicate that the proposed architecture successfully supports interpretable argument evaluation at the system level. The findings discussed in this section emphasize the role of Debate Coach as methodologically grounded and explainable AI framework rather than a fully validated instructional intervention. The system-level behaviour demonstrates that argument evaluation and explanation can be computationally integrated in a coherent and transparent manner. By prioritizing interpretability and reasoning alignment, the framework addresses key limitations identified in existing AI-based debate support systems. These observations support the framework show central objective of establishing foundational architecture for explainable debate coaching. Consequently, the proposed framework provides suitable basis for future empirical validation and pedagogical deployment, as discussed in the concluding section.

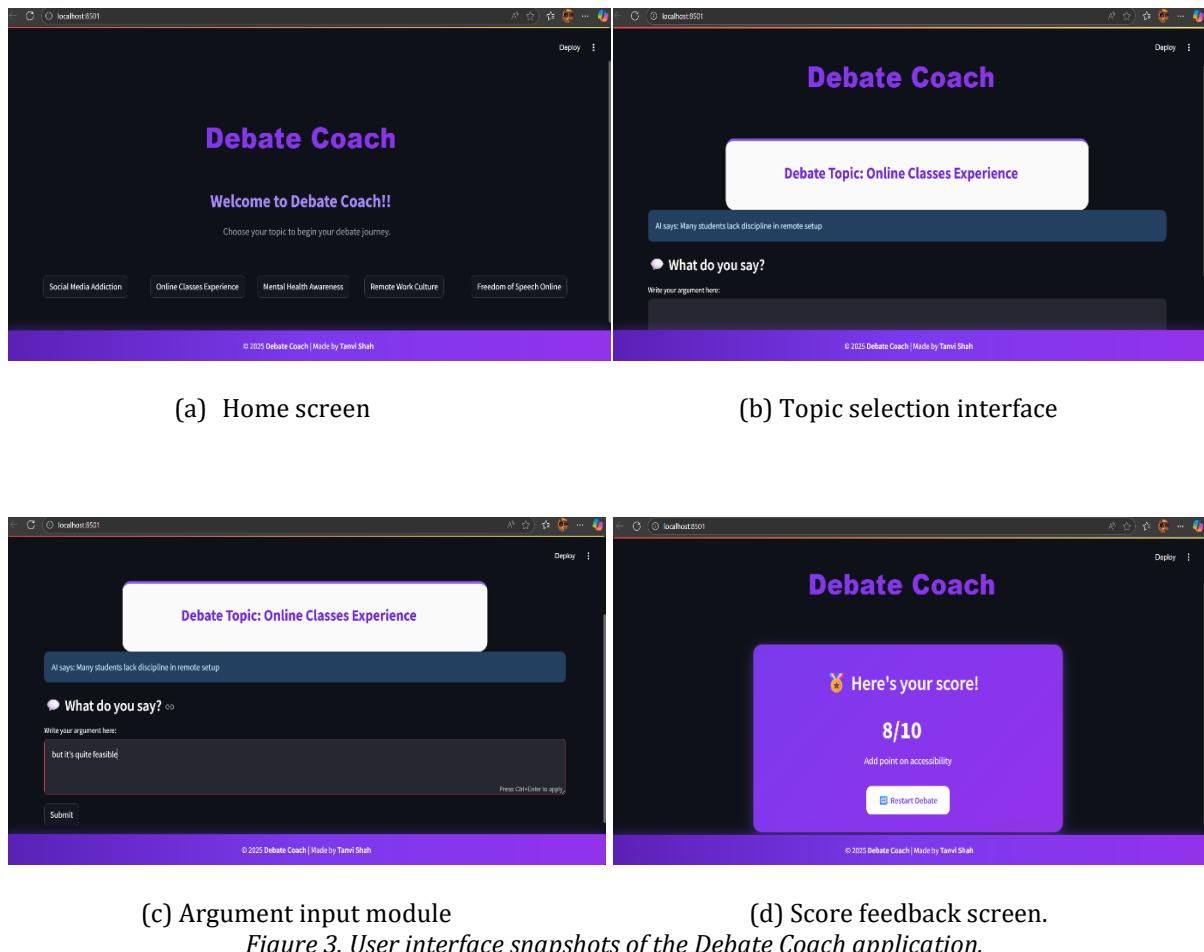


Figure 3. User interface snapshots of the Debate Coach application.

Quantitative and Qualitative Evidence from the Debate Coach System

The objective of the present work is to introduce and validate the conceptual architecture and feasibility of the proposed *Debate Coach* framework rather than to report finalized large-scale performance evaluations. In the present prototype data includes screenshots to illustrate system functionality, the framework's contribution extends beyond interface presentation and incorporates both quantitative internal measures and qualitative explanatory outputs. From quantitative perspective, the Debate Coach system employs an ensemble of seven machine learning classifiers, with prediction consistency assessed through majority voting. During prototype testing across multiple debate topics, the ensemble exhibited high inter-model agreement, indicating stable classification behaviour for arguments with clear logical structure and neutral tone. Argument quality is represented using normalized scoring scheme (e.g., 0-10), allowing comparative assessment across responses. Additionally, the Argumentation Reasoning and Explanation Framework (AREF) applies formal relevance scoring function to rank explanatory arguments

based on premise-input alignment, premise cardinality, and conclusion consistency. This scoring mechanism provides measurable internal indicators of explanation coherence and consistency, even in the absence of external benchmarking. In terms of qualitative results, the system generates structured, interpretable explanations that explicitly identify which argumentative features (e.g., logical consistency, balance, emotional neutrality) influenced the predicted outcome. These explanations were examined across representative debate scenarios and consistently aligned with established argumentation theory and pedagogical expectations. The qualitative outputs demonstrate that the framework successfully transforms model predictions into human-understandable reasoning, addressing key limitation of black-box AI-based assessment tools. These evaluations are intentionally positioned as future work, as the primary contribution of the present framework lies in presenting methodologically grounded, explainable AI framework for debate coaching and critical thinking support. The included screenshots serve to demonstrate functional

realization of the proposed architecture rather than to substitute for empirical validation.

Limitations:

1) Absence of Large-Scale Empirical Validation: The current implementation of the Debate Coach framework has been evaluated at prototype level and does not yet include large-scale user studies or controlled experiments to quantitatively measure learning gains, improvement in critical thinking skills, or long-term pedagogical impact. Future work will involve conducting controlled classroom studies and longitudinal evaluations to statistically assess learning outcomes and user engagement across diverse educational settings.

2) Theory-Grounded Argumentation Framework: The Argumentation Reasoning and Explanation Framework (AREF) employs theory-grounded and systematically structured set of argumentation rules and feature representations, ensuring stable, interpretable, and pedagogically aligned explanations across debate scenarios.

Future work will build upon this robust foundation by integrating adaptive and data-informed extensions to further enrich domain coverage and contextual flexibility.

Computational Validation and Scope of Evaluation:

The present study positions the Debate Coach framework as computational and methodological contribution rather than an empirically validated educational intervention. Accordingly, the evaluation focuses on verifying the feasibility, internal consistency, and explainability of the proposed system architecture. The framework incorporates a structured feature extraction pipeline, an ensemble-based argument quality classification mechanism, and an argumentation-driven explanation layer that formally links model predictions to interpretable reasoning components. System validation is therefore conducted through computational consistency checks, agreement among ensemble classifiers, and coherence of generated explanations with the predicted argument quality class. While the study does not include empirical measurements of student learning outcomes or large-scale experimental performance metrics, this limitation reflects a deliberate scope decision rather than a methodological deficiency. Comprehensive empirical evaluation involving controlled user studies, pre-post learning assessments, and statistical analysis is identified as future work once the framework progresses beyond the prototype stage.

The main component of the system is frontend interface created with React and Tailwind CSS

that offers students neat, intuitive setting in which to select debate topics, submit arguments, and get tailored feedback. The main layer of communication between the AI engine and the user interface is the Flask-based backend, which manages data flow, user sessions, and evaluation processes. AI can greatly contribute in the development of critical thinking skills through personalized learning experiences and interactive simulations, but issues like as potential biases and the requirement for foundational understanding remain [15]. AI debate platforms can foster the critical thinking and analytical rigor necessary for global skills in the twenty-first century [16]. The efficacy of using ChatGPT, large language model (LLM), to improve critical thinking and argumentation abilities among undergraduate students studying international relations in developing country context [17]. According to the analysis, logical reasoning is the foundation of persuasive argumentation since it provides methodical ways to link premises to conclusions [18]. Oiva-Cordova et al., [19] observed the most relevant insights is that students' positive perceptions of GenAI tools increased significantly when these technologies were embedded within intentional pedagogical frameworks. Simulations are among the visualizations offered to successfully convey the results [20]. The framework shows that AI can enhance student learning and empower educators with more tailored instruction, leading to a better interactive educational system [21]. Similar result was noted by Sanches et al., [22] the deployment of the Apriori algorithm and a structured set of attack relations within an argumentation frame-work, AREF has proven its capacity to examine and decipher the logic underlying machine learning predictions on a variety of datasets. However, according to Lee's thinking levels model analysis, students' cognitive levels improved from worse recall to more substantial rationalization when they utilized the framework with ChatGPT. Shanto et al., [23] suggested an enriching process with generative AI.

The observations from the present study are consistent with prior research emphasizing the role of technology-supported pedagogical tools in fostering critical thinking skills. For instance, the successful implementation of Android-based problem-based learning (PBL) materials demonstrates that digitally mediated, interactive learning environments can effectively support higher-order thinking in science education [24]. Similarly, recent investigations into the use of generative AI tools, such as ChatGPT, highlight both their potential to support reasoning and the presence of constraints that may affect precision,

particularly among second-language learners [25]. In this context, the Debate Coach framework aligns with existing findings by offering structured and explainable approach to argument evaluation, thereby mitigating some limitations associated with opaque generative outputs. By emphasizing reasoning transparency and guided feedback rather than unrestricted text generation, the proposed framework complements prior technology-driven learning tools while addressing concerns related to interpretability and learner dependence identified in earlier studies. Using learning assessments powered by AI were studied. On the other hand, dynamic modelling based on machine learning and social cognitive theory fields of science and mathematics to argumentative writing [26]. The present study is consistent with prior research highlighting that the effective integration of educational technologies requires ongoing investigation, collaboration, and professional development to adequately foster critical thinking skills [27,28]. Building on the observations of Zhang et al., [29] regarding variations in learners' critical thinking within intelligent and collaborative learning environments, the Debate Coach framework introduces a structured and explainable approach for examining argumentative reasoning. Through the provision of transparent and consistent feedback in an intelligent learning setting, the framework assists educators in interpreting how students' critical thinking is expressed during debate-oriented activities. This enables the system to offer progressive reports that illustrate the student's development over time, promoting introspection and learning that is goal-directed. Instead of passively accepting AI outcomes, the entire design ensures that students engage in creative struggle, which entails actively thinking, challenging, and improving their ideas. A thorough study in aspects of the Debate Coach AI made the strong impact on how the existing systems differ from the proposed systems.

Conclusion

Debate Coach system demonstrates how artificial intelligence can be utilized to promote reflective learning, argumentation, and critical thinking in fun, interactive environment. While empirical validation of learning impact remains an important future direction, this work establishes foundational, explainable AI framework for debate coaching that can support subsequent experimental and pedagogical studies. The technology transforms students from passive information consumers into active analytical thinkers by simulating live discussions and

offering AI-driven counterarguments. This forces students to reason, defend, and adjust their ideas. The method uses structured feedback mechanisms, adaptive conversation creation, and NLP-based answer assessment to bridge the gap between traditional learning and modern AI-assisted education. In addition to assessing the soundness of their arguments, it enables students to spot biases, logical fallacies, and contradictions in their reasoning. The implementation demonstrates that AI may function as cognitive companion, not replacing but complementing human intellect through guided inquiry and reflection. Learners develop greater sense of self-awareness, logical consistency, and communication clarity, all of which are essential components of higher-order thinking and decision making. To make the experience even more immersive and individualized, the Debate Coach system will be improved in the future to include voice-based debate simulations, emotion-aware feedback, and adjustable difficulty levels. It can greatly advance the field of AI in education by developing into comprehensive AI mentor for reasoning and intellectual development.

Acknowledgements

The author sincerely thanks the guide of the project Prof. Manisha Bharati for her important advice, perceptive recommendations, and unwavering support during the writing of this review study. Additionally, the author expresses sincere gratitude to Dr. Aditya Abhyankar, Head of the Department of Technology, for offering the required academic resources and supportive research atmosphere. Their guidance and assistance have been crucial to this work's successful conclusion.

References

- [1] Alawad, Emad Ali. "AI-driven analysis: A case study on assessing argumentation proficiency and skill development through sequential submissions." *Linguistic and Philosophical Investigations* 24, no. 1 108-117, (2025).
- [2] Ali Akbar Salari and Nooshin Salimi, "The Effectiveness of Argumentation Schema-based Education on Critical Thinking Tendencies in Female Students," *International Journal of New Findings in Health and Educational Sciences (IJHES)* 3-1, 128-41, (2025).
- [3] Alkhatib, Omar J. "An effective assessment method of higher-order thinking skills (problem-solving, critical thinking, creative

thinking, and decision-making) in engineering and humanities." In 2022 Advances in Science and Engineering Technology International Conferences (ASET), pp. 1-6. IEEE, 2022.

[4] Anitha, G., Pasumarti Vamsi Krishna, and Sadam Mohamed Usman. "Enhancing Argumentative Dialogue Systems with RoBERTa and BiLSTM for Opinion Building in Natural Language Understanding." In 2025 International Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1-6. IEEE, 2025.

[5] Borg, AnneMarie, and Floris Bex. "A basic framework for explanations in argumentation." IEEE Intelligent Systems 36, no. 2, 25-35, (2021).

[6] Sujan Hiregundagal Gopal Rao. (2022). "Emerging Security Risks in Automotive System-on-Chips (SoCs): A Comprehensive Review." *International Journal of Intelligent Systems and Applications in Engineering*, 10(3s), 467-471. Retrieved from <https://ijisae.org/index.php/IJISAE/article/view/8001>.

[7] Drushlyak, M., T. Lukashova, Yuliia Sabadosh, Ivan Melnikov, and O. Semenikhina. "Using ChatGPT for the development of critical thinking in youth: Example of inequality proof." In 2024 47th MIPRO ICT and Electronics Convention (MIPRO), pp. 334-339. IEEE, 2024.

[8] Francesca Crudele and Juliana E. Raffaghelli, "Promoting Critical Thinking Through Argument Mapping: A Lab for Undergraduate Students," ed. Peter Blakey, *Journal of Information Technology Education: Research* 22, 497-525, (2023).

[9] Gerlich, M. AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking. *Societies* 2025, 15, 6. evaluation, 2025.

[10] Gou, Tiantian, Dingxin Guo, and Minsheng Fan. "Design and empirical research of critical thinking training model based on digital science argument mapping." In 2024 International Symposium on Educational Technology (ISET), pp. 324-328. IEEE, 2024.

[11] Halpern, D.F. Halpern Critical Thinking Assessment: Manual; Schuhfried GmbH: Mödling, Austria, 2010.

[12] He, Yankun, Kenan Xiao, Zhuoran Shi, and Lin Zhao. "'Dependence' or 'Critical Thinking'?" The Thinking Choices of Education Doctoral Students in Generative AI Environment: Qualitative Research Based on Interview." In 2025 5th International Conference on Artificial Intelligence and Education (ICAIE), pp. 498-503. IEEE, 2025.

[13] Hou, Chenyu, Gaoxia Zhu, and Vidya Sudarshan. "The role of critical thinking on undergraduates' reliance behaviours on generative AI in problem-solving." *British Journal of Educational Technology* 56, no. 5 (2025): 1919-1941.

[14] Jimenez, Patricia P., Andrés Mejía, and Jimena Pascual. "Leveraging AI to Foster Critical Thinking in Engineering Education: Exploring the Three Spheres of Critical Thinking." In 2025 IEEE Global Engineering Education Conference (EDUCON), pp. 1-3. IEEE, 2025.

[15] Lawasi, Miryam Caroline, Vina Aulia Rohman, and Meicky Shoreamanis. "The Use of AI in Improving Student's Critical Thinking Skills." *Proceedings Series on Social Sciences & Humanities* 18, 366-370. (2024).

[16] Manzocco, Mario, Benjamin Ade-Thurow, and Erik Jon Byker. "Developing Critical Thinking through AI-Powered Debate: Technical Design and Intercultural Implementation of an Educational Debate Bot." *International Research and Review* 14, no. 2, 47-63, (2025).

[17] Mario De La Puente et al., "Investigating the Use of chatGPT as a Tool for Enhancing Critical Thinking and Argumentation Skills in International Relations Debates Among Undergraduate Students," *Smart Learning Environments* 11, no. 1, 40561-024-00347-0, (2024).

[18] Mustafa M. Bodrick et al., "Approaching the Construction of Arguments in Postgraduate Education Programs," journal-article, by Mustafa Bodrick, *British Journal of Teacher Education and Pedagogy* 2755-1482, (2025).

[19] Oiva-Córdova, Luis Magdiel, Inés Alvarez-Icaza, and Carlos Enrique George-Reyes. "Evaluation of Generative AI use to foster critical thinking in higher education." IEEE

Revista Iberoamericana de Tecnologias del Aprendizaje (2025).

[20] Palupi, Shinta, Richki Hardi, Agung Sakti Pribadi, Riski Zulkarnain, M. Nurfalah Setiawan, Nariza Wanti Wulan Sari, and Denny Trias Utomo. "Enhancing Computational Strategies to Decode ChatGPT's Influence on the Critical Thinking Abilities of University Students." In 2024 4th International Conference of science and information technology in Smart Administration (ICSINTESA), pp. 27-32. IEEE, 2024.

[21] Saddhono, Kundharu, Raheni Suhita, Ani Rakhmawati, Muhammad Rohmadi, and Indriyo K. Sukmono. "AI and Literacy: Developing Critical Thinking and Analytical Skills in the Digital Era." In 2024 International Conference on IoT, Communication and Automation Technology (ICICAT), pp. 360-365. IEEE, 2024.

[22] Sanches, Hugo Eduardo, Ayslan Trevisan Possebom, and Linnyer Beatrys Ruiz Aylon. "AREF-Argumentative Rule-Based Explanatory Framework." In 2025 IEEE International systems Conference (SysCon), pp. 1-8. IEEE, 2025.

[23] Shanto, Shakib Sadat, Zishan Ahmed, and Akinul Islam Jony. "Enriching learning process with generative AI: A proposed framework to cultivate critical thinking in higher education using Chat GPT." *Tuijin Jishu/Journal of Propulsion Technology* 45, no. 1, 3019-3029, (2024).

[24] Sudarma, Teguh Febri, Muhyiatul Fadilah, Ratna Tanjung, Dedi Surahman, and Shofia Ummi. "Developing Android-Based Learning Media for Enhancing Critical Thinking Skills Through Problem-Based Learning." In 2025 4th International Conference on Creative Communication and Innovative Technology (ICCIT), pp. 1-7. IEEE, 2025.

[25] Suh, Simon, Jihyuk Bang, and Ji Woo Han. "Developing Critical Thinking in Second Language Learners: Exploring Generative AI like ChatGPT as a Tool for Argumentative Essay Writing." *arXiv preprint arXiv:2503.17013* (2025).

[26] Wambsganss, Thiemo, Andreas Janson, Matthias Söllner, Ken Koedinger, and Jan Marco Leimeister. "Improving students' argumentation skills using dynamic machine-learning-based modeling." *Information Systems Research* 36, no. 1 (2025): 474-507.

[27] Watsachol Narongsaksakul, "AI-based Assessment for Learning on Students' Critical Thinking," *Journal of Ethics in Higher Education*, no. 6.2, 237-49, (2025).

[28] Yang, Ying, and Chaojuan Zhang. "The Effects of Classroom Interaction Strategies on the Development of Higher-Order Thinking in College Students." In 2025 14th International Conference on Educational and Information Technology (ICEIT), pp. 297-302. IEEE, 2025.

[29] Zhang, Di, Zhuming Nie, and Fan Wang. "Analysis of the Differences in the Development of Students' Critical Thinking by Different Types of Collaborative Learning in an Intelligent Environment." In 2022 IEEE International Conference on Unmanned Systems (ICUS), pp. 543-548. IEEE, 2022.