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Abstract

The essence of Meta-learning is “learning to learn”. Meta Learning is a
subset of machine learning. Meta-learning is the process of using
knowledge gained from many tasks during meta-training to enable a
model to quickly learn new tasks from few examples. Meta learning
algorithm, or the learning method itself, such that the modified learner is
better than the original learner at learning from additional experience.
This paper explore introduction of Meta learning, how it works , the
structure of literature survey of Meta learning, Meta Learning for few shot
learning in specialized domains, evaluation metrics and benchmark
datasets for meta learning and future direction and open problems in
meta learning for few shot learning..

Introduction to Meta Learning

Meta Learning is known as “learning to learn”. It
is a branch of machine learning focuses on
creating systems. Unlike traditional machine
learning, which requires large datasets and
extensive training for each new task, Meta
learning aims to make models more flexible and
data efficient. Importance of Meta learning in
machine learning are rapid adaptation,
improved  generalization across diverse
domains, and reduced training cost and support
for continuous learning without forgetting
previous knowledge.

Significance of Zero, one and few shot
learning

These are the learning paradigms closely related
to Meta learning that deal with limited data
scenario:Zero shot learning (ZSL) refers to a
model’s ability to recognize or perform tasks for
classes or scenarios it has never seen during
training. The model must generalize its
knowledge from known (seen) classes to unseen
ones using semantic relationships or auxiliary
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information (e.g. attributes, textual
descriptions, or embedding).Identifying rare or
new objects or understanding unseen intents in
NLP and detecting rare diseases not represented
in training data are the example of zero shot
learning.

One shot learning refers to a model learns to
recognize a new class from only one example.
Significance of one shot learning is efficient
learning, ideal for limited data domain like facial
recognition, security and personalized Al
assistants and encourages transfer learning and
metric learning. Real application of one shot
learning is such as FACE ID systems, signature
verification and character recognition

Few shot learning(FSL) refers to a model learns
new classes or tasks from a very small number
of labeled examples (typically 2-
100).Significance of few shot learning is to
bridges the gap between traditional supervised
learning and one shot learning. It reduces data
collection cost and time. Applications of few
shot learning are medical diagnosis, robotics
and NLP tasks like text classification with
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limited examples. Following table 1 shows
various aspect such as data requirement, goal,

key advantage and real application of zero shot,

one shot and few shot learning.

Table 1: Different aspect of zero, one and few shot learning

Aspect Zero-Shot One-Shot Few-Shot

Data Requirement | No examples One example Few examples

Goal Generalize to | Learn from one | Learn efficiently
unseen classes example from few examples

Key Advantage Eliminates Fast adaptation Reduces training
labelling data need

Real-World Use NLP, vision, | Face recognition Healthcare,
recommendation robotics, NLP

Working of Meta learning

Training models to quickly adapt to new tasks
with minimal data is the focus of a machine
learning paradigm known as "meta-learning," or
"learning to learn." In order to help models
quickly adapt to new, untested tasks using a
limited amount of task-specific data, meta-
learning aims to enable models to generalize
learning experiences across different tasks

Two primary phases are involved in the typical
meta-learning workflow:

Meta - Learning Tasks:

Exposure to a range of tasks, each with its own
set of parameters or characteristics, is part of
the meta-training phase.

Model Training: Many tasks are used to train a
base model, also known as a learner. The
purpose of this model is to represent shared
knowledge or common patterns among various
tasks.

Adaption: With few examples, the model is
trained to quickly adjust its parameters to new
tasks.

Meta - Testing (Adaption)

New Task: The model is given a brand-new task
during the meta-testing stage that it was not
exposed to during training.

Few Shots: With only a small amount of data, the
model is modified for the new task (few-shot
learning). In order to make this adaptation, the
model's parameters are frequently updated
using the examples from the new task.
Generalization: = Meta-learning  efficacy is
evaluated by looking at how well the model
quickly generalizes to the new task. Subsequent
paragraphs, however, are indented.

We can summarize the meta-learning workflow
generally follows these steps.A meta-learner is
trained on multiple different tasks, each with its
own (often smaller) dataset. Through this
training, it extracts patterns about what works
best for efficient learning in various scenarios.
When the meta-learner encounters a new task, it

43

can quickly adapt and perform well, often with
very little new data.

Taxonomy of Meta learning approaches
Model-Based Meta-Learning

Model-based meta-learning approaches employ
specialized architectures designed to rapidly
adapt to new tasks by encoding prior knowledge
within their internal states or parameters. These
models effectively function as adaptive learning
systems that can generalize quickly with limited
data, often by incorporating external memory or
dynamic networks that facilitate fast learning. A
prominent example is the use of Neural Turing
Machines (NTMs) or other recurrent
architectures with augmented external memory,
which store task-relevant information that the
model can retrieve and utilize during adaptation
[7].

Memory-Augmented Matching Networks
exemplify this approach by integrating such
memory mechanisms to enhance one-shot and
few-shot learning performance, achieving
improved accuracy on benchmark datasets such
as Omniglot and mini-Image Net. These
architectures enable the network to simulate
human-like rapid learning by recalling similar
past experiences, thus enabling the model to
efficiently infer new classes from scant data [7].
This model-based paradigm contrasts with
static architectures by incorporating dynamic
representations that evolve with new input,
offering a flexible framework for handling
diverse few-shot learning tasks.

Model-based meta-learning emphasizes the
importance of adaptable model structures
capable of encoding and efficiently accessing
information relevant across tasks, supporting
rapid generalization in scenarios where task
boundaries and distributions vary significantly.

Metric-Based Meta-Learning
Metric-based meta-learning centers on learning
similarity functions or embedding spaces that
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facilitate rapid comparison and classification of
examples with few instances. Instead of directly
adapting model parameters, these methods
focus on learning a distance metric that
generalizes well across tasks, allowing the
system to classify new examples based on their
proximity to known examples in the learned
space.

Typical frameworks in this category include
Matching Networks, which map queries and
support examples to an embedding space where
classification reduces to a weighted nearest
neighbor search [8]. Relation Networks build on
this idea by learning a deep non-linear distance
function between query and support set
instances, improving the flexibility and
robustness of metric comparisons [8].
Prototypical Networks further simplify this
concept by representing each class with a
prototype—an average embedding computed
over support examples—thereby facilitating
efficient classification through metric distances
[9].

These models have demonstrated strong
performance on various few-shot benchmarks,
outperforming traditional classifiers trained
from scratch. Their reliance on learned metrics
rather than parameter adaptation makes them
particularly well-suited when rapid task
adaptation is required without expensive fine-
tuning. Moreover, metric-based methods have
been effectively applied in specialized domains
such as drug discovery, where data scarcity is
acute, highlighting their utility in handling
diverse real-world few-shot learning challenges
[10].

Optimization-Based Meta-Learning
Optimization-based meta-learning adopts a
fundamentally different strategy by focusing on
learning how to optimize model parameters
efficiently for new tasks. Frameworks like
Model-Agnostic Meta-Learning (MAML)
epitomize this category by learning an
initialization of model parameters that can be
rapidly adapted to new tasks with a few
gradient updates [11]. This inner-outer loop
optimization framework enables efficient
transfer of knowledge through learned
optimization trajectories, translating to faster
convergence and improved performance on few-
shot tasks.

Variants of MAML have addressed its
computational and scalability challenges,
including first-order approximations that avoid
expensive second-order derivatives while
maintaining competitive performance [12].
Further developments incorporate uncertainty-
aware mechanisms through Bayesian
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formulations and  variational inference,
enhancing the model's robustness and
calibration on wunseen tasks [13]. These
optimization-based approaches provide a
flexible and theoretically grounded method for
few-shot learning, capable of adapting arbitrary
neural architectures within meta-learning
frameworks.

Optimization-based meta-learning thus
combines algorithmic innovation with practical
efficacy, opening pathways for efficient model
adaptation in domains ranging from image
classification to sequential predictions, as it
directly optimizes for rapid learning dynamics
rather than just static representations.

Zero-Shot
Integration
Techniques for Zero-Shot Learning in Meta-
Learning Context

Zero-shot learning (ZSL) represents a
challenging frontier, demanding models to
recognize classes or perform tasks without any
direct labeled examples. Integrating meta-
learning with zero-shot paradigms involves
leveraging semantic embedding, auxiliary
information, or multimodal data to bridge the
gap between seen and unseen classes. For
instance, learning a cross-modal mapping
between semantic concepts and image features
enables models to infer class characteristics
based on attributes or textual descriptions [14].
In this context, meta-learning serves to enhance
the generalization capability of such models by
training them to adapt to novel modalities or
semantic spaces efficiently, even in the absence
of training samples from target classes.

More advanced approaches exploit multi-level
meta-learning frameworks, incorporating deep
kernel learning methods such as Deep Kernel
Transfer (DKT). DKT implements a Bayesian
treatment in the inner optimization loop to
transfer kernels across tasks, enabling
uncertainty quantification and robust zero-shot
performance in classification and regression
[15]. These methods alleviate reliance on task-
specific parameter estimation, streamlining
adaptation to unseen classes.

Meta-learning thus acts as a scaffold for zero-
shot models to acquire the capacity for rapid
generalization by optimizing representations or
transfer mechanisms that exploit semantic
similarity, paving the way for scalable zero-shot
classification in practical applications where
labeled data is prohibitive to obtain.

Learning and Meta-Learning

Meta-Meta and Zero-Shot

Classification

Learning
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An emerging concept relevant to zero-shot
learning is meta-meta learning. This involves
learning not just to learn, but learning how to
combine multiple meta-learners, each
specialized in a particular type of learning
problem. Such ensemble frameworks build
meta-meta classifiers that determine, for any
new task, the optimal combination of biased
low-variance learners to achieve the best
classification with minimal data [16]. This
strategy proves particularly effective in zero-
shot or extremely low-data settings since it
leverages collective expertise without explicit
task-specific training data.

Meta-meta classifiers can dynamically select,
weight, and combine strategies tailored to task
characteristics, outperforming traditional meta-
learning or ensembling alone. This flexibility is
crucial when tasks vary widely or when direct
supervision is scarce, as in zero-shot
classification.

Furthermore, advancements incorporate natural
language guidance and generative latent space
models from image synthesis to generate task-
adapted neural network weights in a zero-shot
manner, enhancing zero-shot learning’s breadth
and accuracy [17]. This creative intersection
between meta-learning and generative models
opens new directions for handling unseen tasks
seamlessly.

Zero-Shot Learning Applications
Domains

Zero-shot learning’s applicability spans diverse
domains, particularly where domain shifts and
modality heterogeneity present significant
obstacles. Cross-lingual natural language
understanding exemplifies such a domain,
where meta-learning facilitates training on high-
resource languages with minimal or zero data
from target low-resource languages [18].
Through learning what knowledge to share and
how to select beneficial instances, models
achieve improved performance in zero-shot and
few-shot cross-lingual tasks such as natural
language inference and question answering.

In automated machine learning (AutoML), meta-
learning frameworks extend to zero-shot
pipeline and hyperparameter selection by
learning surrogate models that rank and select
optimal deep learning pipelines based on simple
meta-features  describing new  datasets,
enhancing efficiency under resource constraints
[19]. Similarly, zero-shot summarization
methods benefit from meta-learning to
generalize across unseen document domains,
especially when integrating multimodal or
external knowledge sources [20].

dacCross
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Robotics also employs zero-shot meta-learning
to adapt control policies or perception models to
new tasks or environments without retraining,
relying on learned meta-mappings and
functional programming-inspired architectures
to enable zero-shot task remapping [21]. These
applications underscore the power of meta-
learning to enable zero-shot capabilities across
fields marked by rapid change, limited data, or
multimodality.

One-Shot Learning Strategies via Meta-
Learning

Episodic Training and Task Simulation
One-shot learning’s hallmark is requiring
models to classify or perform tasks based on just
a single labeled example. A prevalent training
technique involves episodic training, where the
meta-learner is repeatedly trained on simulated
tasks or episodes that mimic one-shot scenarios.
This procedure conditions the model to acquire
representations and learning dynamics attuned
to rapid generalization [5]. By structuring
training into episodes that closely replicate the
sparse data conditions of testing, the model’s
ability to quickly adapt to new tasks is
promoted.

Episodic training facilitates learning task-level
inductive biases that transcend specific class
boundaries, preparing the model for diverse
one-shot classification challenges. This approach
encourages extraction of transferable features
and robust decision boundaries, helping
mitigate model overfitting or bias issues
associated with limited data.

Through episodic simulations, meta-learning
frameworks develop a nuanced understanding
of task variations, effectively preparing them for
real-world settings where truly one-shot
learning is demanded.

One-Shot Learning Architectures
Architectural innovations play a crucial role in
enabling effective one-shot learning. Siamese
Networks pioneered this area by learning a
function that maps pairs of inputs to a similarity
score, reducing classification to a verification
problem by comparing a query instance with a
single known example [8]. Relation Networks
extend this principle by learning a deep non-
linear metric for comparing pairs of images,
trained end-to-end to infer relations and achieve
improved classification accuracy within the one-
shot realm [8].

Meta-meta classifiers further enhance one-shot
approaches by combining multiple learners to
tackle varied test problems, capitalizing on
ensemble diversity [16]. These architectures
focus on learning notions of similarity or
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relations rather than explicit class boundaries,
benefiting from flexibility and data efficiency.
Notably, applications in robotics push the
boundaries of one-shot learning architectures
by enabling robots to imitate human actions
from a single demonstration. Models trained via
meta-learning learn priors from multiple tasks
and contextually adapt to perform new
manipulation skills based on a single video
demonstration, overcoming domain shifts and
embodiment differences [22]. This fusion of
architectural  design and meta-learning
exemplifies the synergy needed to attain
practical one-shot learning in complex settings.

Robotics and Imitation Learning from One
Demonstration

Robotics presents an ideal application for one-
shot learning via meta-learning, bridging
perception, action, and domain adaptation
challenges. Recent research has demonstrated
systems capable of learning new manipulation
skills by observing a single human
demonstration video, even in the presence of
significant domain discrepancies such as
changes in perspective, environment, or
embodiment between human and robot [22].
Meta-learning allows robots to build a prior
from multiple previous related tasks, forming an
adaptable knowledge base enabling fast learning
of new ones. Experimental results on robotic
arms like PR2 and Sawyer demonstrate
successful rapid learning to perform pick-and-
place, pushing, and placement tasks with just
one human-provided video [23]. Such
capabilities mark a significant advancement
over traditional learning methods dependent on
extensive, task-specific training.

The incorporation of domain-adaptive meta-
learning in robotics thus paves the way for
flexible, efficient skill acquisition resembling
human learning capabilities, crucial for real-
world deployment of autonomous systems.

Few-Shot Learning with Meta-Learning: Core
Techniques

Data  Augmentation
Strategies

One avenue to enhance few-shot learning
involves leveraging data augmentation and
robust embedding learning to compensate for
scarce labeled samples. Data augmentation
artificially increases dataset size and diversity
by applying transformations or generative
models to existing samples, helping prevent
overfitting and improving generalization [4].
Embedding strategies focus on learning feature
representations that capture transferable
semantics, enabling models to identify and

and Embedding
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generalize patterns across tasks even with
limited data.

Such techniques have been effectively employed
in computer vision tasks and drug discovery
applications, where learning meaningful
embeddings allows models like Prototypical
Networks or Matching Networks to perform
reliably despite data constraints [10]. Enriching
embeddings with intermediate representations
or graph-based features can further enhance
model robustness in few-shot scenarios.
Collectively, data augmentation coupled with
thoughtfully learned embeddings lays a strong
foundation for successful few-shot learning by
amplifying available information and facilitating
rapid knowledge transfer.

Optimization-Based Few-Shot Learning (e.g.,
MAML and Variants)

Optimization-based methods,  particularly
Model-Agnostic Meta-Learning (MAML), form a
cornerstone of few-shot learning approaches.
MAML learns an initialization of network
parameters suitable for rapid adaptation
through a small number of gradient steps on
novel tasks, achieving superior generalization to
unseen tasks [11]. Despite its popularity, MAML

faces challenges relating to computational
complexity due to second-order gradient
calculations.

Addressing this, first-order approximations like
TA-Reptile eliminate second-order terms,
maintaining competitive performance while
reducing computational costs substantially [12].
Moreover, Bayesian meta-learning variants
employ gradient-based variational inference to
model uncertainty in parameter estimates,
leading to improved calibration and robustness
in classification and regression tasks [13].

These optimization-centric frameworks offer a
principled mechanism for fast learning in
diverse domains, supporting adaptation from
limited data with versatility and efficiency.
Metric Learning and
Projections
Complementing optimization-based methods,
metric learning approaches enhance few-shot
learning by focusing on distinguishing inter-
class differences through learned similarity
functions. Task-adaptive projection models like
TapNets project embedded features into task-
specific subspaces, conditioning the model
dynamically to particular few-shot learning
scenarios and improving discrimination [9].
Prototypical networks aggregate support
examples to form representative prototypes
serving as centers of each class, facilitating
efficient nearest-neighbor classification in the

Task-Adaptive
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embedding space. The ability to learn these
metrics and projections episodically enables

Together, metric learning and task-adaptive
projections form a robust strategy for few-shot

models to generalize better across varied tasks classification,  balancing  flexibility = and
[9]. Relation Networks extend the flexibility by computational efficiency through learned
learning complex similarity functions, enabling comparison mechanisms.
refined class discrimination especially under
limited data.
Table 2 Different Categories of Learning along with key methods, challenges and their applications
Category Core Idea Key Methods / | Key Papers / | Challenges Applications
Models References
Few-Shot Learn from | MAML, Finn et al. | Overfitting, high | Medical
Learning a small | Prototypical (2017), Snell et | intra-class diagnosis,
number of | Networks, al. (2017), | variance, poor | robotics, text
examples Matching Vinyals et al. | generalization classification
(2-100) NetworKks, (2016), Santoro
Relation et al. (2016),
Networks, Nichol et al
Memory- (2018)
Augmented
Neural Networks
(MANNSs), Reptile
One-Shot Learn from | Siamese Koch et  al. | Generalization Face
Learning just one | Networks, (2015), Vinyals | from single | recognition,
labeled Matching et al. (2016), | example, feature | signature
example per | Networks, NTMs, | Graves et al. | robustness verification,
class Data (2014) character
Augmentation, recognition
Memory-based
models
Zero-Shot Learn to | Semantic Xian et al. | No training data | Object
Learning classify Embeddings (2017), Mikolov | for unseen | recognition,
unseen (Word2Vec, et al. (2013), | classes, domain | NLP tasks,
classes GloVe, FastText), | Goodfellow et al. | shift machine
using side | Generative (2014), Socher et translation
information | Models (GANSs, | al. (2013), CVAE-
VAEs), Graph- | ZSL
based ZSL
Optimizatio | Learn rapid | MAML, Reptile, | Finn et al. | Task Few-shot
n-Based model Meta-SGD (2017), Nichol et | adaptability, image
Meta- adaptation al. (2018), Li et | computational classification,
Learning by al. (2017) cost reinforcemen
optimizing tlearning
initializatio
n
Metric- Learn Siamese Koch et al. | Designing task- | One-shot
Based Meta- | similarity/d | Networks, (2015), Snell et | specific metrics, | facial,
Learning istance Prototypical al. (2017), Sung | scalability medical
metrics for | Networks, etal. (2018) imaging,
comparison | Relation handwriting
Networks recognition
Model- Rapid MANNS, NTMs, | Santoro et al. | Memory NLP models,
Based Meta- | learning Meta-LSTM (2016), Graves et | management, language
Learning using al. (2014), Ravi & | fast adaptation translation,
memory/qu Larochelle reinforcemen
ery (2017) tlearning
mechanism
S
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Bayesian Probabilisti | BMAML, CNAPs, | Yoon et al. | Modeling Few-shot
Meta- c PACOH (2018), Gordon | uncertainty, NLP, medical
Learning generalizati et al. (2019), | robustness Al self-
on, Rothfuss et al. driving
uncertainty (2021)
estimation
Meta-RL Fast RL?, VariBAD, | Duan et al. | Policy transfer, | Robotics,
adaptation MAML for RL (2016), Zintgraf | sample efficiency | game Al,
in et al. (2019), autonomous
reinforceme Finn et al. control
nt (2017)[1]
environmen
ts
Neural Automatic ENAS, DARTS, | Pham et  al. | Search efficiency, | Model design,
Architectur | search for | AutoML-Zero (2018), Liu et al. | integration with | hyperparame
e effective (2019), Real et | meta-learning ter tuning,
Search&Aut | network al. (2020) optimization
oML structures
Gradient- Meta- Evolutionary Lee et al. (2018), | Sample Model
Free Meta- | learning algorithms, black- | Real etal. (2020) | inefficiency, adaptation,
Learning without box meta-learners convergence hyperparame
gradients or speed ter search
backpropag
ation
Domain Cross- Few-shot domain | Cai et al. (2021), | Quick Cross-lingual
Adaptation | domain adaptation, meta- | Tsai etal.(2020) | adaptation, NLP,
& Transfer | generalizati | transfer learning knowledge healthcare
Learning on transfer diagnostics,
cross-domain
image
recognition

The Structure of Literature Survey

This is literature survey section consist of
different researcher overview regarding their
opinion about Meta learning subdomains, Meta
learning approaches ,challenges limitation and
result observations.

Meta Learning is a process that helps models
learns new and unseen tasks on their own.
Figure 1 depicts the structure of literature
survey of Meta learning. There are various
subdomains of meta learning namely
Optimization based Meta learning, Metric Based
Meta Learning, Model Based Meta Learning,
Bayesian Meta Learning, Few Shot One Shot
Zero Shot Learning, Meta Reinforcement
Learning, Meta Learning for Neural Architecture
Search, Gradient Free Meta Learning, Meta
Learning for Domain Adaption and Transfer
Learning.

Researcher Chelsea Finn et al. [11][22] propose
an algorithm for meta-learning that is model-
agnostic, in the sense that it is compatible with
any model trained with gradient descent and
applicable to a variety of different learning
problems, including classification, regression,
and reinforcement learning. The goal of meta-
learning is to train a model on a variety of
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learning tasks, such that it can solve new
learning tasks using only a small number of
training samples. In their approach, the
parameters of the model are explicitly trained
such that a small number of gradient steps with
a small amount of training data from a new task
will produce good generalization performance
on that task. In effect, method trains the model
to be easy to fine-tune. Authors demonstrate
that this approach leads to state-of-the-art
performance on two few-shot image
classification benchmarks, produces good
results on few-shot regression, and accelerates
fine-tuning for policy gradient reinforcement
learning with neural network policies.

The researcher Finn et al., Nichol et al. and Linn
et al.[11][22] proposed the goal is to learn an
optimization strategy by that allows models to
quickly adapt to new tasks. Optimization-based
methods, which are predominant among meta-
learning solutions for parametric models,
primarily focus on optimizing the initialization
of the model parameters used during  the
training procedure. The rationale behind this
approach is that effective initialization can
expedite the adaptation of model parameters to
new tasks with minimal optimization steps.
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Examples of such schemes include the model
agnostic meta-learning (MAML) algorithm and
its variations [6], [7]. These methods may be
extended to the design of other training
algorithm hyper parameters such as the
learning rate. Existing optimization-based
methods that address model initialization can be
further categorized into second-order and first-
order algorithms, distinguished by their
utilization of second-order derivatives and first-
order gradient information. Additionally,
modular meta-learning presents a distinct
optimization-based approach that relies on the
recombination of shared modules to address
individual tasks[16]. The key methods are
Model-Agnostic Meta-Learning (MAML) The
initial model parameters are optimized so that a
few gradient updates adapt it to a new task.
Reptile are First-order approximation of MAML
that simplifies the computation. Meta-SGD
learns not just initialization but also update
rules. There are application are few shot image
classification, Adaptive robotics, Reinforcement
learning.

Meta Learning
(Learming o Leae Framewerk)
|
|
[ | | :
) ‘ o Subdimans
Few ShotLeaming  OneshotLeaming  Zero Shot Leaming 1)0ptmizaton Based e Learing
Lt Mta Learning Arproachis Meta Leaing Approaches
Meta Laaring ADOYOGCOES 1) lamese Netwrk 1)Semantic Embedding 3)Mefrc Baged Meta Leaming|
1Mz Based Approich )
1Matching Netvork 2) Genesative Models (GAY) 3Model Based Meta Leaming
2)ptmazaten B dpproach
3] Memory Based 4JBayesian Meta Lering

L

3o Bosed 5)Fe Shat One Shot Zero Snat Learming

VarEAD

MAML For AL /
E)Gradiant Fros Meta Leaming

i / 9)Meta Laaming for Domaln nd_a;mn and Transer Leaming

DARTS

. 6)Meta Renforcement Leaming
4)Byeian based approsch
7)Meta Learming o Neural Archtecture Seareh

SIPACCH (PAC-Bayes Optimizalion Based Meta Learing)

Foe Sk com Kdton Tes Ao n P nd Ve
hute ML

Figure 1 Literature Structure of Meta learning
subdomains

Metric-based approaches, according to Snell et
al. [60], work on the premise that tasks in the
environment have a common feature
representation mapping that makes it possible
to measure how similar data points are. The
objective is to acquire a similarity function
enabling a model to categorize new instances
based on their proximity to established
instances. These methods make it easier to use
nonparametric predictive models without
having to train them on new tasks by meta-
learning a similarity metric from data from
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many tasks. Siamese Network uses a distance
metric (e.g, Euclidean distance) between
embedding’s of two images to determine
similarity. Matching Networks Learns an
embedding space and classifies new instances
via a nearest-neighbor approach Notable
examples of modern metric-based meta-
learning methods include matching networks
[3], prototypical networks [4], and relational
networks  [5].Prototypical Networks are
Computes class prototypes and classifies new
points based on distance. While aligned with the
empirical Bayes methods seen in Gaussian
Processes, the focus here is on collecting data
from distinct tasks. However, due to their less
frequent adoption in engineering problems,
parametric models will be the primary focus of
this monograph, leading to limited elaboration
on metric-based meta-learning. Application
based on metric meta learning are One shot
facial recognition, handwriting recognition and
Medical imaging.

Graves et al. [61] and Ravi and Larochelle et al.
[62] proposed Model-based meta-learning
involves creating models that have a memory
part, which allows them learn rapidly from only
a limited amount of examples. Examples of these
kinds of models are Memory-Augmented Neural
Networks (MANNs), Neural Turing Machines
(NTMs), and meta-LSTM. Memory-Augmented
Neural Networks use external memory, such as

a differentiable memory module, to keep
learned representations. Model-based
approaches, on the other hand, involve

optimizing a hypermodel that directly turns a
task's training set into a model. There are
numerous types of neural networks that are
able to do this translation, including recurrent
neural networks, convolutional neural
networks, or hypernetworks. A straightforward
example of model-based meta-learning uses the
training set of a new task to refine a context
vector that governs the operation of a model
shared across tasks. Neural Turing Machines
(NTMs) employ a memory matrix and learn
read/write operations. Meta-LSTM uses LSTMs
to derive update rules for neural networks
instead of relying on backpropagation

Gordon et al. [23] provide thoughts on Bayesian
Meta Learning. It uses probabilistic models to
improve both the ability to estimate uncertainty
and the ability to generalize. Bayesian MAML
improves on MAML by learning a distribution
over model parameters instead of using a fixed
initialization. Conditional neural processes are
used by CNAPs (Conditional Neural Adaptive
Processes) to adapt to each task. PACOH (PAC-
Bayes Optimization based Meta Learning) is a
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Bayesian optimization framework that has been
specifically designed for meta learning.
“One-shot Learning of Object Categories” by Fei-
Fei, Fergus, and Perona [63] is one of the earliest
approaches that use meta-learning for object
recognition tasks. Instead of starting from the
beginning, the authors utilized insights from
previously acquired categories, regardless of
how distinct these categories might be. This
hypothesis was conducted via a Bayesian
setting: The authors extracted “general
knowledge” from previously learned categories
and represented it in the form of a prior
probability density function in the space of
model parameters. Given a training set,
regardless of how small, the authors updated
this knowledge and produced a posterior
density that could be wused for object
recognition. Their experiments showed that this
was a productive approach, and that some
useful information about categories could have
been obtained from a few training examples.
“One-shot Learning of Simple Visual Concepts”
by Lake, Salakhutdinov, Gross, and Tenenbaum
[24] works in the domain of handwritten
characters, an ideal setting for studying one-
shot learning at the interface of human and
machine learning. It presents a Hierachical
Baysesian Model that learns visual concepts
from a single example by inferring a
probabilistic program. Handwritten characters
contain a rich internal part structure of
penstrokes, providing a good a priori reason to
explore a parts-based approach to
representation learning. The authors propose a
new model of character learning based on the
induction of probabilistic part-based
representations. The model’s approach, based
on compositionality and causality, allows it to
generate novel examples and perform one shot
classification with human level performance,
outperforming deep learning models on
Omniglot dataset. Given an example image of a
new character type, the model infers a sequence
of latent strokes that best explains the pixels in
the image by drawing on a broad stroke
vocabulary abstracted from many previous
characters. This stroke-based representation
guides the generalization of new examples of the
concept. This work aimed to bridge the gap
between human ability to quickly learn concepts
from minimal data and data-intensive
requirements of traditional machine learning
algorithms.

“One-shot Learning with a Hierarchical
Nonparametric Bayesian Model” by
Salakhutdinov, Tenenbaum, and Torralba [65]
leverages higher-order knowledge abstracted
from previously learned categories to estimate

50

the new category’s prototype as well as an
appropriate similarity metric from just one
example. These estimates are also improved, as
more examples are observed. As illustrated in
figure 2, consider how human learners seeing
one example of an unfamiliar animal, such as a
“wildebeest,” can draw on experience with many
examples of “horse,” “cows,” “sheep,” etc. These
similar categories have similar prototypes and
share similar variations in their feature space
representations. If we can identify the new
example of “wildebeest” as belonging to this
“animal” super-category, we can transfer an
appropriate similarity metric and thereby
generate informatively even from a single
example. The algorithm that the authors used is
a general-purpose hierarchical Bayesian model
that depends minimally on domain-specific
representations but instead learns to perform
one-shot learning by finding more intelligent
representations tuned to specific subdomains of
a task.

“One-shot  Learning by  Inverting A
Compositional Causal Process” by Lake,
Salakhutdinov, and Tenenbaum [66] tackles
one-shot learning via a computational approach
called Hierarchical Bayesian Program Learning
that utilizes the principles of composition and
causality to build a probabilistic generative
model of handwritten characters. This is
compositional because characters are
represented as stochastic motor programs
where the primitive structure is shared and
reused across characters at multiple levels,
including strokes and sub-strokes. Given the
raw pixels, the model searches for a “structural
description” to explain the image by freely
combining these elementary parts and their
spatial relations. This is causal because strokes
are not modeled at the level of muscle
movements, but are abstract enough to be
completed by higher-order action. The model
was evaluated on the Omniglot dataset, a
challenging benchmark for one-shot
classification and generation tasks, achieving
human-level performance. The model's ability to
produce human-like performance on tasks
beyond simple classification, such as generating
new examples of a learned concept,
demonstrates a deeper conceptual
understanding. In essence, the paper shows that
by modeling the underlying compositional and
causal processes that create visual concepts, a
system can learn to recognize and generate new

visual classes from very few examples,
mimicking human-like one-shot learning
abilities.
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Few Shot One Shot Zero Shot Learning

Few shot, one shot and zero shot learning
enable models to generalize from limited or no
train examples. Few Shot Learning methods are
prototypical network, MAML and Meta-
LSTM.One shot Learning methods are Siamese
Networks and Matching network. Whereas zero
shot learning methods are Semantic embeddings
(Word2Vec,GloVe,FastText) and Generative
Models which include Generative adversarial
Network and Variational Autoencoder(VAE).
Applications are Image classification with
limited data, zero-shot machine translation and
few shot medical diagnosis.

Meta Reinforcement Learning

RL2 (Reinforcement Learning Squared) uses an
RNN to encode task information for quick
adaptation.VariBAD (Variational Bayes Adaptive
RL) is Bayesian inference-based method for
adaptive RL.Model Agnostic Meta Learning
(MAML) are useful in solving reinforcement
learning problems.

Meta Learning for Neural Architecture Search
Meta Learning for neural architecture search
(NAS) is to automate the search for optimal
neural network architectures. Key Methods

include ENAS (Efficient NAS) uses
reinforcement learning for efficient architecture
search.  DARTS (Differentiable Architecture
Search) uses gradient-based optimization for
NAS. AutoML-Zero is Evolutionary-based NAS
framework. Application examples includes
Automated deep learning, model design Hyper
parameter tuning and Neural network
optimization

Gradient Free Meta Learning

Gradient Free Meta Learning techniques is meta
learning techniques that do not rely on gradient
based optimization. The key methods used in
Gradient free meta learning include black box
meta learning and evolutionary algorithms for
meta learning. Applications are evolutionary
based model adaptation and Hyperparameter
search.

Meta Learning for Domain Adaption and
Transfer Learning

It enable models to transfer knowledge across
different domains with minimal retraining. The
key methods are few shot domain adaptation
and Meta learning for cross domain tasks.
Applications are Cross-lingual NLP models,
Cross-domain image recognition, Al-assisted
healthcare diagnostics

Table 2: Meta-Learning for Few-Shot Learning in Specialized Domains

Paper / | Meta- Challenges Limitations Results & Observations
Author(s) Learning
Approach
Gharoun et | Comprehensi | - Scalability and | - Full survey; | Reviews state-of-the-art
al. (Meta- | ve review of | efficiency limitations context- | meta-learning  paradigms
Learning meta- - Generalization | dependent and provides insights into
Approaches learning across diverse recent advances and
Survey),2024 | approaches tasks research directions in few-
in few-shot shot learning
Verma et al. | Model- - Training | - GAN training | Significant improvement in
(Meta- Agnostic generative models | stability zero-shot (ZSL) and
Learning for | Meta- with few seen | - Mode collapse on | generalized zero-shot
Generalized Learning class samples fine-grained learning (GZSL) tasks with
Zero-Shot (MAML) - Generalizing to | datasets few-shot seen samples;
Learning),20 | integrated unseen classes - Requires attribute | relative improvements up
20 with - Bias towards | vectors for classes to 27.9% over state-of-the-
Wasserstein | seen classes in art on standard
GAN GZSL benchmarks (CUB, AWAZ2,

aPY). Meta-learned GANSs
generate high-quality
samples enabling better
unseen class generalization.

Proposed zero-shot task
distribution enhances
performance[57][58]
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Vinyals et al. | Metric-based | - Overfitting with | - Requires episodic | Achieved state-of-the-art
(Matching Meta- few examples training one-shot  accuracy on
Networks for | Learning - Need to rapidly | - High | Omniglot and ImageNet;
One-Shot with adapt to new | computational cost | episodic training mimics
Learning),20 | attention classes for large support | test conditions improving
16 and memory | - Defining | sets generalization.
appropriate Demonstrated effectiveness
similarity metric of attention-weighted
nearest neighbor
classification in embedding
space [33]
Snell et al. | Metric- - Limited labeled | - May not handle | Robust few-shot
(Prototypical | based: examples per class | complex task | classification via
Networks for | Learning - Handling class | distributions embedding with learned
Few-Shot class variability prototypes; simple and
Learning),20 | prototypes effective, scalable. Shows
17 and strong performance on
distances benchmark datasets like
minilmageNet [60]
Finn et al. | Optimization | - Fast adaptation | - Sensitive to | Provides a model
(MAML: -based Meta- | to new tasks with | hyperparameters initialization enabling quick
Model- Learning few samples - Requires | fine-tuning; broadly
Agnostic - Computational | differentiable applicable across domains
Meta- demands of nested | models (RL, vision). Forms basis of
Learning),20 gradients ZSML in zero-shot
17 learning[22]
Other Generative - Training | - Often require large | Generative models alleviate
Generative Adversarial instability of GANs | seen class data bias in GZSL by
Models in | Networks - Data imbalance - Hard to ensure | synthesizing unseen class
Zero-Shot and - Poor quality on | sample diversity samples; inferior when
Learning (f- | Variational unseen class training data for seen
CLSWGAN, Autoencoder | generation classes is scarce
CVAE- S for
7SL),2017- Synthetic
2018 Data

Meta-Learning For Few-Shot Learning In
Specialized Domains

Cyberspace Security and Intrusion Detection
In the cybersecurity domain, signaling the high
stakes of identifying zero-day and emerging
attacks under data scarcity, meta-learning offers
promising solutions. Traditional supervised
models require large-scale labeled logs, which
are often unavailable, making few-shot and
zero-shot learning vital for robust intrusion
detection [3]. Meta-learning frameworks in this
realm employ metric-based and optimization-
based techniques to detect anomalies and
classify attack types with limited samples.

For instance, deep neural network architectures
and meta-learning strategies have been
proposed to distinguish network traffic
patterns, achieving high detection rates even
when trained with minimal malicious samples
[24]. Furthermore, continual few-shot learning
methods enable intrusion detection models to
adapt online to new attack types without
forgetting previous knowledge, a critical
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requirement for evolving security landscapes
[25]. By enabling fast adaptation and
generalization across diverse and changing
threats, meta-learning strengthens the resilience
and responsiveness of cybersecurity defenses.

Medical Imaging and Bioacoustics
Applications
Medical imaging frequently encounters the

challenge of limited annotated data,
compounded by diversity across imaging sites
and patient populations. Site-agnostic meta-
learning addresses this by learning generalized
initializations that adapt efficiently to new sites
with few examples, improving classification
accuracy in diagnosing conditions such as
autism spectrum disorder [26]. These methods
handle heterogeneity in imaging protocols and
patient demographics, yielding robust clinical
models from scarce data.

Bioacoustic event detection similarly benefits
from few-shot learning methodologies. Instead
of deploying data-hungry deep learning, some
approaches leverage classical machine learning
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techniques augmented by meta-learning to
classify rare acoustic events in wildlife
monitoring, balancing accuracy with
computational efficiency [27]. Moreover, the
integration of meta-learning with Neural
Architecture Search (NAS) in medical image
analysis optimizes network structures for few-
shot tasks, delivering improved segmentation
and classification performance while reducing
reliance on large annotated datasets [28].

These advances demonstrate meta-learning’s

transformative impact on healthcare and
ecological monitoring, enabling effective
analysis despite sparse data.

Financial Forecasting and Urban

Infrastructure Monitoring

Financial markets are characterized by volatility
and limited data in novel conditions, challenging
traditional predictive models reliant on large
historical datasets. Meta-learning and few-shot
learning frameworks, incorporating model-
agnostic meta-learning and Siamese networks,
enable financial models to forecast price
movements and volatility under unfamiliar
market states without extensive retraining,
facilitating adaptive and resilient financial
modeling [6].

Urban infrastructure monitoring, particularly
through distributed acoustic sensing (DAS), also
leverages meta-learning for few-shot
classification of diverse event types with
minimal labeled samples. By exploring multiple
data preprocessing techniques and embedding
networks trained on meta-datasets, these
frameworks achieve precise classification while
accommodating varied sensor modalities [29].
This capability is particularly valuable for
detecting anomalies or events in complex urban
environments with limited annotated data,
underpinning smart city applications.

Thus, meta-learning enhances the effectiveness
and adaptability of models in both financial and
urban infrastructure domains where data
scarcity and domain heterogeneity pose
significant challenges.

Challenges and Limitations in Meta-Learning
for Few-Shot Settings

1. Data Distribution Shifts
Adaptation

A fundamental challenge in meta-learning arises
from distributional shifts between training and
deployment domains. Cross-domain
generalization remains difficult due to differing
feature distributions, class semantics, or data
modalities, which can substantially degrade few-
shot learning performance. Addressing this
requires domain-adaptive meta-learning
approaches that explicitly model or compensate
for such shifts, facilitating transferability [30].

and Domain
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For example, site-agnostic meta-learning
methods in medical imaging explicitly optimize
for robust adaptation across heterogeneous
imaging centers, preserving performance
despite domain variations [26]. Nonetheless,
fully overcoming domain mismatch remains an
open problem, especially in complex multimodal
and noisy environments.

2. Computational Complexity and Scalability
Many meta-learning techniques, especially those
based on optimization (e.g, MAML), involve
costly second-order derivative computations,
limiting scalability and applicability in resource-
constrained settings. This computational burden
limits real-time adaptation and deployment on
edge devices.

To mitigate this, approaches such as first-order
gradient approximations reduce overhead with
minimal performance loss [12]. Additionally,
hardware-aware  meta-learning  algorithms
incorporate quantization and other hardware

constraints  upfront, optimizing learning
efficiency and convergence speed without
compromising accuracy [31]. These

developments are crucial for meta-learning's
transition from research prototypes to practical,
scalable solutions.

3. Overfitting and Model Bias in Meta-Training
Overfitting to meta-training tasks is another
significant concern. Meta-learners often develop
biases toward tasks seen during training,
limiting their adaptability to novel or unrelated
tasks. Investigations into MAML reveal that

feature reuse rather than rapid feature
adaptation dominates its generalization,
prompting the development of simplified
algorithms and regularization methods to

balance these effects [11].

Entropy-based methods and task-agnostic meta-
learning strategies have also been proposed to
combat model bias and overfitting, enhancing
the generalization across diverse unseen tasks
[12]. Despite these advances, understanding and
controlling meta-learner biases remains a key
research direction to ensure broad applicability

Evaluation Metrics and Benchmark Datasets
For Meta-Learning

Popular Benchmarks for Few-Shot and Zero-
Shot Learning

Benchmark datasets such as Omniglot, mini-
ImageNet, and Tiered-ImageNet have become
standard  for  evaluating  meta-learning
performance, providing controlled settings for
few-shot classification with well-defined splits
of seen and unseen classes [5]. Omniglot offers a
character recognition challenge with many
classes but few examples per class, ideal for
testing generalization. Mini-ImageNet and
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Tiered-ImageNet provide more complex natural
image datasets with increasing difficulty and
diversity.

While widely adopted, limitations exist,
including domain specificity and the challenge of
replicating real-world heterogeneous data
distributions. Domain-specific datasets in
cybersecurity, medical imaging, and others are
increasingly used to complement these
benchmarks, highlighting diverse application
challenges.

Common Evaluation Metrics

Evaluation metrics in few-shot learning typically
include accuracy, precision, recall, and F1-score,
especially for classification tasks [33]. Recent
advances propose novel metrics adapted to
specific domains. For instance, mean average log
percentage error (MALPE) has been introduced
in forecasting under limited data as a robust
alternative to Mean Absolute Percentage Error
(MAPE), mitigating bias and improving fairness
in evaluation [34].

Such  metrics ensure that performance
assessments account for the unique difficulties
inherent in few-shot setups, including class
imbalance, variability, and sample scarcity.

Comparative Performance of Meta-Learning
Approaches

Comparative studies show that no single meta-
learning approach universally dominates;
rather, relative performance depends on data
type, task difficulty, and resource availability.
Metric-based methods often provide efficient
classification =~ with  good  generalization,
especially when paired with embedding
augmentation [10]. Optimization-based models
excel in rapid parameter adaptation but may
incur computational costs, balanced by first-
order variants [35].

Understanding these trade-offs is essential in
selecting appropriate methods tailored to
application constraints and objectives.

Future Directions and Open Problems In
Meta-Learning For Few-Shot Learning
Enhancing Generalization and Robustness
across Tasks

Future meta-learning research aims to enhance
model generalization and robustness in the face
of task heterogeneity and multimodal data
distributions. Addressing complex, multimodal
tasks requires methods that effectively integrate
diverse input types and adapt to shifting task

domains [36]. Expanding meta-learning’s
capacity to generalize across broader
distributions and uncertainty conditions

remains a critical goal [1].
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Integration with Multimodal and Cross-Domain
Learning

Leveraging multimodal information and
semantic concepts promises to bridge gaps in
zero- and few-shot learning by enriching
representations and enabling cross-modal
transfer [14]. Meta-learning models capable of
learning shared latent spaces across modalities
can better exploit the complementary nature of
data sources, improving prediction accuracy and
robustness in complex real-world settings [18].

Meta-Learning Under Resource Constraints and
Real-World Deployment

Efficient meta-learning compatible  with
hardware and  computational resource
constraints is vital for real-world deployment.
Advances in hardware-aware meta-learning
accommodate quantized networks and optimize
training under memory and speed limitations,
facilitating few-shot learning at the edge [31].
Simultaneously, integrating meta-learning into
scalable Al systems requires balancing
adaptation speed, accuracy, and resource usage,
a vital research frontier for making few-shot
learning ubiquitous.

In conclusion, meta-learning has established
itself as a versatile and powerful framework
addressing the fundamental challenges of zero-,
one-, and few-shot learning across various
domains. By systematically learning how to
learn, these approaches provide robust, scalable
solutions that extend machine learning’s
applicability to situations marked by data
scarcity and task variability. Ongoing advances
in architectures, optimization techniques,
domain adaptation, and resource-aware designs
continue to expand its horizons, promising
impactful applications in security, medicine,
finance, and beyond.
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