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Abstract 

The essence of Meta-learning is “learning to learn”. Meta Learning is a 
subset of machine learning. Meta-learning is the process of using 
knowledge gained from many tasks during meta-training to enable a 
model to quickly learn new tasks from few examples. Meta learning 
algorithm, or the learning method itself, such that the modified learner is 
better than the original learner at learning from additional experience. 
This paper explore introduction of Meta learning, how it works , the 
structure of literature survey of Meta learning, Meta Learning for few shot 
learning in specialized domains, evaluation metrics and benchmark 
datasets for meta learning and future direction and open problems in 
meta learning for few shot learning..  
 

 
Introduction to Meta Learning 
Meta Learning is known as “learning to learn”. It 
is a branch of machine learning focuses on 
creating systems. Unlike traditional machine 
learning, which requires large datasets and 
extensive training for each new task, Meta 
learning aims to make models more flexible and 
data efficient. Importance of Meta learning in 
machine learning are rapid adaptation, 
improved generalization across diverse 
domains, and reduced training cost and support 
for continuous learning without forgetting 
previous knowledge. 
 
Significance of Zero, one and few shot 
learning 
These are the learning paradigms closely related 
to Meta learning that deal with limited data 
scenario:Zero shot learning (ZSL) refers to a 
model’s ability to recognize or perform tasks for 
classes or scenarios it has never seen during 
training. The model must generalize its 
knowledge from known (seen) classes to unseen 
ones using semantic relationships or auxiliary 

information (e.g., attributes, textual 
descriptions, or embedding).Identifying rare or 
new objects or understanding unseen intents in 
NLP and detecting rare diseases not represented 
in training data are the example of zero shot 
learning. 
One shot learning refers to a model learns to 
recognize a new class from only one example. 
Significance of one shot learning is efficient 
learning, ideal for limited data domain like facial 
recognition, security and personalized AI 
assistants and encourages transfer learning and 
metric learning. Real application of one shot 
learning is such as FACE ID systems, signature 
verification and character recognition 
Few shot learning(FSL) refers to a model learns 
new classes or tasks from a very small number 
of labeled examples (typically 2-
100).Significance of few shot learning is to 
bridges the gap between traditional supervised 
learning and one shot learning. It reduces data 
collection cost and time. Applications of few 
shot learning are medical diagnosis, robotics 
and NLP tasks like text classification with 
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limited examples. Following table 1 shows 
various aspect such as data requirement, goal, 

key advantage and real application of zero shot, 
one shot and few shot learning. 

 
Table 1: Different aspect of zero, one and few shot learning 

Aspect Zero-Shot One-Shot Few-Shot 

Data Requirement No examples One example Few examples 

Goal Generalize to 
unseen classes 

Learn from one 
example 

Learn efficiently 
from few examples 

Key Advantage Eliminates 
labelling 

Fast adaptation Reduces training 
data need 

Real-World Use NLP, vision, 
recommendation 

Face recognition Healthcare, 
robotics, NLP 

 
Working of Meta learning 
Training models to quickly adapt to new tasks 
with minimal data is the focus of a machine 
learning paradigm known as "meta-learning," or 
"learning to learn." In order to help models 
quickly adapt to new, untested tasks using a 
limited amount of task-specific data, meta-
learning aims to enable models to generalize 
learning experiences across different tasks 
Two primary phases are involved in the typical 
meta-learning workflow:  
Meta – Learning Tasks:  
Exposure to a range of tasks, each with its own 
set of parameters or characteristics, is part of 
the meta-training phase. 
Model Training: Many tasks are used to train a 
base model, also known as a learner. The 
purpose of this model is to represent shared 
knowledge or common patterns among various 
tasks. 
Adaption: With few examples, the model is 
trained to quickly adjust its parameters to new 
tasks. 
Meta - Testing (Adaption) 
New Task: The model is given a brand-new task 
during the meta-testing stage that it was not 
exposed to during training. 
Few Shots: With only a small amount of data, the 
model is modified for the new task (few-shot 
learning). In order to make this adaptation, the 
model's parameters are frequently updated 
using the examples from the new task. 
Generalization: Meta-learning efficacy is 
evaluated by looking at how well the model 
quickly generalizes to the new task. Subsequent 
paragraphs, however, are indented. 
We can summarize the meta-learning workflow 
generally follows these steps.A meta-learner is 
trained on multiple different tasks, each with its 
own (often smaller) dataset. Through this 
training, it extracts patterns about what works 
best for efficient learning in various scenarios. 
When the meta-learner encounters a new task, it 

can quickly adapt and perform well, often with 
very little new data. 
 
Taxonomy of Meta learning approaches  
Model-Based Meta-Learning 
Model-based meta-learning approaches employ 
specialized architectures designed to rapidly 
adapt to new tasks by encoding prior knowledge 
within their internal states or parameters. These 
models effectively function as adaptive learning 
systems that can generalize quickly with limited 
data, often by incorporating external memory or 
dynamic networks that facilitate fast learning. A 
prominent example is the use of Neural Turing 
Machines (NTMs) or other recurrent 
architectures with augmented external memory, 
which store task-relevant information that the 
model can retrieve and utilize during adaptation 
[7].  
Memory-Augmented Matching Networks 
exemplify this approach by integrating such 
memory mechanisms to enhance one-shot and 
few-shot learning performance, achieving 
improved accuracy on benchmark datasets such 
as Omniglot and mini-Image Net. These 
architectures enable the network to simulate 
human-like rapid learning by recalling similar 
past experiences, thus enabling the model to 
efficiently infer new classes from scant data [7]. 
This model-based paradigm contrasts with 
static architectures by incorporating dynamic 
representations that evolve with new input, 
offering a flexible framework for handling 
diverse few-shot learning tasks. 
Model-based meta-learning emphasizes the 
importance of adaptable model structures 
capable of encoding and efficiently accessing 
information relevant across tasks, supporting 
rapid generalization in scenarios where task 
boundaries and distributions vary significantly. 

 
Metric-Based Meta-Learning 
Metric-based meta-learning centers on learning 
similarity functions or embedding spaces that 
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facilitate rapid comparison and classification of 
examples with few instances. Instead of directly 
adapting model parameters, these methods 
focus on learning a distance metric that 
generalizes well across tasks, allowing the 
system to classify new examples based on their 
proximity to known examples in the learned 
space. 
Typical frameworks in this category include 
Matching Networks, which map queries and 
support examples to an embedding space where 
classification reduces to a weighted nearest 
neighbor search [8]. Relation Networks build on 
this idea by learning a deep non-linear distance 
function between query and support set 
instances, improving the flexibility and 
robustness of metric comparisons [8]. 
Prototypical Networks further simplify this 
concept by representing each class with a 
prototype—an average embedding computed 
over support examples—thereby facilitating 
efficient classification through metric distances 
[9]. 
These models have demonstrated strong 
performance on various few-shot benchmarks, 
outperforming traditional classifiers trained 
from scratch. Their reliance on learned metrics 
rather than parameter adaptation makes them 
particularly well-suited when rapid task 
adaptation is required without expensive fine-
tuning. Moreover, metric-based methods have 
been effectively applied in specialized domains 
such as drug discovery, where data scarcity is 
acute, highlighting their utility in handling 
diverse real-world few-shot learning challenges 
[10]. 
 
Optimization-Based Meta-Learning 
Optimization-based meta-learning adopts a 
fundamentally different strategy by focusing on 
learning how to optimize model parameters 
efficiently for new tasks. Frameworks like 
Model-Agnostic Meta-Learning (MAML) 
epitomize this category by learning an 
initialization of model parameters that can be 
rapidly adapted to new tasks with a few 
gradient updates [11]. This inner-outer loop 
optimization framework enables efficient 
transfer of knowledge through learned 
optimization trajectories, translating to faster 
convergence and improved performance on few-
shot tasks. 
Variants of MAML have addressed its 
computational and scalability challenges, 
including first-order approximations that avoid 
expensive second-order derivatives while 
maintaining competitive performance [12]. 
Further developments incorporate uncertainty-
aware mechanisms through Bayesian 

formulations and variational inference, 
enhancing the model’s robustness and 
calibration on unseen tasks [13]. These 
optimization-based approaches provide a 
flexible and theoretically grounded method for 
few-shot learning, capable of adapting arbitrary 
neural architectures within meta-learning 
frameworks. 
Optimization-based meta-learning thus 
combines algorithmic innovation with practical 
efficacy, opening pathways for efficient model 
adaptation in domains ranging from image 
classification to sequential predictions, as it 
directly optimizes for rapid learning dynamics 
rather than just static representations. 
 
Zero-Shot Learning and Meta-Learning 
Integration 
Techniques for Zero-Shot Learning in Meta-
Learning Context 
Zero-shot learning (ZSL) represents a 
challenging frontier, demanding models to 
recognize classes or perform tasks without any 
direct labeled examples. Integrating meta-
learning with zero-shot paradigms involves 
leveraging semantic embedding, auxiliary 
information, or multimodal data to bridge the 
gap between seen and unseen classes. For 
instance, learning a cross-modal mapping 
between semantic concepts and image features 
enables models to infer class characteristics 
based on attributes or textual descriptions [14]. 
In this context, meta-learning serves to enhance 
the generalization capability of such models by 
training them to adapt to novel modalities or 
semantic spaces efficiently, even in the absence 
of training samples from target classes. 
More advanced approaches exploit multi-level 
meta-learning frameworks, incorporating deep 
kernel learning methods such as Deep Kernel 
Transfer (DKT). DKT implements a Bayesian 
treatment in the inner optimization loop to 
transfer kernels across tasks, enabling 
uncertainty quantification and robust zero-shot 
performance in classification and regression 
[15]. These methods alleviate reliance on task-
specific parameter estimation, streamlining 
adaptation to unseen classes. 
Meta-learning thus acts as a scaffold for zero-
shot models to acquire the capacity for rapid 
generalization by optimizing representations or 
transfer mechanisms that exploit semantic 
similarity, paving the way for scalable zero-shot 
classification in practical applications where 
labeled data is prohibitive to obtain. 
 
Meta-Meta Learning and Zero-Shot 
Classification 
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An emerging concept relevant to zero-shot 
learning is meta-meta learning. This involves 
learning not just to learn, but learning how to 
combine multiple meta-learners, each 
specialized in a particular type of learning 
problem. Such ensemble frameworks build 
meta-meta classifiers that determine, for any 
new task, the optimal combination of biased 
low-variance learners to achieve the best 
classification with minimal data [16]. This 
strategy proves particularly effective in zero-
shot or extremely low-data settings since it 
leverages collective expertise without explicit 
task-specific training data. 
Meta-meta classifiers can dynamically select, 
weight, and combine strategies tailored to task 
characteristics, outperforming traditional meta-
learning or ensembling alone. This flexibility is 
crucial when tasks vary widely or when direct 
supervision is scarce, as in zero-shot 
classification. 
Furthermore, advancements incorporate natural 
language guidance and generative latent space 
models from image synthesis to generate task-
adapted neural network weights in a zero-shot 
manner, enhancing zero-shot learning’s breadth 
and accuracy [17]. This creative intersection 
between meta-learning and generative models 
opens new directions for handling unseen tasks 
seamlessly. 
 
Zero-Shot Learning Applications across 
Domains 
Zero-shot learning’s applicability spans diverse 
domains, particularly where domain shifts and 
modality heterogeneity present significant 
obstacles. Cross-lingual natural language 
understanding exemplifies such a domain, 
where meta-learning facilitates training on high-
resource languages with minimal or zero data 
from target low-resource languages [18]. 
Through learning what knowledge to share and 
how to select beneficial instances, models 
achieve improved performance in zero-shot and 
few-shot cross-lingual tasks such as natural 
language inference and question answering. 
In automated machine learning (AutoML), meta-
learning frameworks extend to zero-shot 
pipeline and hyperparameter selection by 
learning surrogate models that rank and select 
optimal deep learning pipelines based on simple 
meta-features describing new datasets, 
enhancing efficiency under resource constraints 
[19]. Similarly, zero-shot summarization 
methods benefit from meta-learning to 
generalize across unseen document domains, 
especially when integrating multimodal or 
external knowledge sources [20]. 

Robotics also employs zero-shot meta-learning 
to adapt control policies or perception models to 
new tasks or environments without retraining, 
relying on learned meta-mappings and 
functional programming-inspired architectures 
to enable zero-shot task remapping [21]. These 
applications underscore the power of meta-
learning to enable zero-shot capabilities across 
fields marked by rapid change, limited data, or 
multimodality. 
 
One-Shot Learning Strategies via Meta-
Learning 
Episodic Training and Task Simulation 
One-shot learning’s hallmark is requiring 
models to classify or perform tasks based on just 
a single labeled example. A prevalent training 
technique involves episodic training, where the 
meta-learner is repeatedly trained on simulated 
tasks or episodes that mimic one-shot scenarios. 
This procedure conditions the model to acquire 
representations and learning dynamics attuned 
to rapid generalization [5]. By structuring 
training into episodes that closely replicate the 
sparse data conditions of testing, the model’s 
ability to quickly adapt to new tasks is 
promoted. 
Episodic training facilitates learning task-level 
inductive biases that transcend specific class 
boundaries, preparing the model for diverse 
one-shot classification challenges. This approach 
encourages extraction of transferable features 
and robust decision boundaries, helping 
mitigate model overfitting or bias issues 
associated with limited data. 
Through episodic simulations, meta-learning 
frameworks develop a nuanced understanding 
of task variations, effectively preparing them for 
real-world settings where truly one-shot 
learning is demanded. 
 
One-Shot Learning Architectures 
Architectural innovations play a crucial role in 
enabling effective one-shot learning. Siamese 
Networks pioneered this area by learning a 
function that maps pairs of inputs to a similarity 
score, reducing classification to a verification 
problem by comparing a query instance with a 
single known example [8]. Relation Networks 
extend this principle by learning a deep non-
linear metric for comparing pairs of images, 
trained end-to-end to infer relations and achieve 
improved classification accuracy within the one-
shot realm [8]. 
Meta-meta classifiers further enhance one-shot 
approaches by combining multiple learners to 
tackle varied test problems, capitalizing on 
ensemble diversity [16]. These architectures 
focus on learning notions of similarity or 
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relations rather than explicit class boundaries, 
benefiting from flexibility and data efficiency. 
Notably, applications in robotics push the 
boundaries of one-shot learning architectures 
by enabling robots to imitate human actions 
from a single demonstration. Models trained via 
meta-learning learn priors from multiple tasks 
and contextually adapt to perform new 
manipulation skills based on a single video 
demonstration, overcoming domain shifts and 
embodiment differences [22]. This fusion of 
architectural design and meta-learning 
exemplifies the synergy needed to attain 
practical one-shot learning in complex settings. 
 
Robotics and Imitation Learning from One 
Demonstration 
Robotics presents an ideal application for one-
shot learning via meta-learning, bridging 
perception, action, and domain adaptation 
challenges. Recent research has demonstrated 
systems capable of learning new manipulation 
skills by observing a single human 
demonstration video, even in the presence of 
significant domain discrepancies such as 
changes in perspective, environment, or 
embodiment between human and robot [22]. 
Meta-learning allows robots to build a prior 
from multiple previous related tasks, forming an 
adaptable knowledge base enabling fast learning 
of new ones. Experimental results on robotic 
arms like PR2 and Sawyer demonstrate 
successful rapid learning to perform pick-and-
place, pushing, and placement tasks with just 
one human-provided video [23]. Such 
capabilities mark a significant advancement 
over traditional learning methods dependent on 
extensive, task-specific training. 
The incorporation of domain-adaptive meta-
learning in robotics thus paves the way for 
flexible, efficient skill acquisition resembling 
human learning capabilities, crucial for real-
world deployment of autonomous systems. 
 
Few-Shot Learning with Meta-Learning: Core 
Techniques 
Data Augmentation and Embedding 
Strategies 
One avenue to enhance few-shot learning 
involves leveraging data augmentation and 
robust embedding learning to compensate for 
scarce labeled samples. Data augmentation 
artificially increases dataset size and diversity 
by applying transformations or generative 
models to existing samples, helping prevent 
overfitting and improving generalization [4]. 
Embedding strategies focus on learning feature 
representations that capture transferable 
semantics, enabling models to identify and 

generalize patterns across tasks even with 
limited data. 
Such techniques have been effectively employed 
in computer vision tasks and drug discovery 
applications, where learning meaningful 
embeddings allows models like Prototypical 
Networks or Matching Networks to perform 
reliably despite data constraints [10]. Enriching 
embeddings with intermediate representations 
or graph-based features can further enhance 
model robustness in few-shot scenarios. 
Collectively, data augmentation coupled with 
thoughtfully learned embeddings lays a strong 
foundation for successful few-shot learning by 
amplifying available information and facilitating 
rapid knowledge transfer. 
 
Optimization-Based Few-Shot Learning (e.g., 
MAML and Variants) 
Optimization-based methods, particularly 
Model-Agnostic Meta-Learning (MAML), form a 
cornerstone of few-shot learning approaches. 
MAML learns an initialization of network 
parameters suitable for rapid adaptation 
through a small number of gradient steps on 
novel tasks, achieving superior generalization to 
unseen tasks [11]. Despite its popularity, MAML 
faces challenges relating to computational 
complexity due to second-order gradient 
calculations. 
Addressing this, first-order approximations like 
TA-Reptile eliminate second-order terms, 
maintaining competitive performance while 
reducing computational costs substantially [12]. 
Moreover, Bayesian meta-learning variants 
employ gradient-based variational inference to 
model uncertainty in parameter estimates, 
leading to improved calibration and robustness 
in classification and regression tasks [13]. 
These optimization-centric frameworks offer a 
principled mechanism for fast learning in 
diverse domains, supporting adaptation from 
limited data with versatility and efficiency. 
 
Metric Learning and Task-Adaptive 
Projections 
Complementing optimization-based methods, 
metric learning approaches enhance few-shot 
learning by focusing on distinguishing inter-
class differences through learned similarity 
functions. Task-adaptive projection models like 
TapNets project embedded features into task-
specific subspaces, conditioning the model 
dynamically to particular few-shot learning 
scenarios and improving discrimination [9]. 
Prototypical networks aggregate support 
examples to form representative prototypes 
serving as centers of each class, facilitating 
efficient nearest-neighbor classification in the 
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embedding space. The ability to learn these 
metrics and projections episodically enables 
models to generalize better across varied tasks 
[9]. Relation Networks extend the flexibility by 
learning complex similarity functions, enabling 
refined class discrimination especially under 
limited data. 

Together, metric learning and task-adaptive 
projections form a robust strategy for few-shot 
classification, balancing flexibility and 
computational efficiency through learned 
comparison mechanisms. 

 
Table 2 Different Categories of Learning along with key methods , challenges and their applications 
Category Core Idea Key Methods / 

Models 
Key Papers / 
References 

Challenges Applications 

Few-Shot 
Learning 

Learn from 
a small 
number of 
examples 
(2–100) 

MAML, 
Prototypical 
Networks, 
Matching 
Networks, 
Relation 
Networks, 
Memory-
Augmented 
Neural Networks 
(MANNs), Reptile 

Finn et al. 
(2017), Snell et 
al. (2017), 
Vinyals et al. 
(2016), Santoro 
et al. (2016), 
Nichol et al. 
(2018)  

Overfitting, high 
intra-class 
variance, poor 
generalization 

Medical 
diagnosis, 
robotics, text 
classification  

One-Shot 
Learning 

Learn from 
just one 
labeled 
example per 
class 

Siamese 
Networks, 
Matching 
Networks, NTMs, 
Data 
Augmentation, 
Memory-based 
models 

Koch et al. 
(2015), Vinyals 
et al. (2016), 
Graves et al. 
(2014) 

Generalization 
from single 
example, feature 
robustness 

Face 
recognition, 
signature 
verification, 
character 
recognition  

Zero-Shot 
Learning 

Learn to 
classify 
unseen 
classes 
using side 
information 

Semantic 
Embeddings 
(Word2Vec, 
GloVe, FastText), 
Generative 
Models (GANs, 
VAEs), Graph-
based ZSL 

Xian et al. 
(2017), Mikolov 
et al. (2013), 
Goodfellow et al. 
(2014), Socher et 
al. (2013), CVAE-
ZSL 

No training data 
for unseen 
classes, domain 
shift 

Object 
recognition, 
NLP tasks, 
machine 
translation  

Optimizatio
n-Based 
Meta-
Learning 

Learn rapid 
model 
adaptation 
by 
optimizing 
initializatio
n 

MAML, Reptile, 
Meta-SGD 

Finn et al. 
(2017), Nichol et 
al. (2018), Li et 
al. (2017) 

Task 
adaptability, 
computational 
cost 

Few-shot 
image 
classification, 
reinforcemen
t learning  

Metric-
Based Meta-
Learning 

Learn 
similarity/d
istance 
metrics for 
comparison 

Siamese 
Networks, 
Prototypical 
Networks, 
Relation 
Networks 

Koch et al. 
(2015), Snell et 
al. (2017), Sung 
et al. (2018) 

Designing task-
specific metrics, 
scalability 

One-shot 
facial, 
medical 
imaging, 
handwriting 
recognition  

Model-
Based Meta-
Learning 

Rapid 
learning 
using 
memory/qu
ery 
mechanism
s 

MANNs, NTMs, 
Meta-LSTM 

Santoro et al. 
(2016), Graves et 
al. (2014), Ravi & 
Larochelle 
(2017) 

Memory 
management, 
fast adaptation 

NLP models, 
language 
translation, 
reinforcemen
t learning  
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Bayesian 
Meta-
Learning 

Probabilisti
c 
generalizati
on, 
uncertainty 
estimation 

BMAML, CNAPs, 
PACOH 

Yoon et al. 
(2018), Gordon 
et al. (2019), 
Rothfuss et al. 
(2021) 

Modeling 
uncertainty, 
robustness 

Few-shot 
NLP, medical 
AI, self-
driving  

Meta-RL Fast 
adaptation 
in 
reinforceme
nt 
environmen
ts 

RL², VariBAD, 
MAML for RL 

Duan et al. 
(2016), Zintgraf 
et al. (2019), 
Finn et al. 
(2017)[1]  

Policy transfer, 
sample efficiency 

Robotics, 
game AI, 
autonomous 
control  

Neural 
Architectur
e 
Search&Aut
oML 

Automatic 
search for 
effective 
network 
structures 

ENAS, DARTS, 
AutoML-Zero 

Pham et al. 
(2018), Liu et al. 
(2019), Real et 
al. (2020) 

Search efficiency, 
integration with 
meta-learning 

Model design, 
hyperparame
ter tuning, 
optimization  

Gradient-
Free Meta-
Learning 

Meta-
learning 
without 
gradients or 
backpropag
ation 

Evolutionary 
algorithms, black-
box meta-learners 

Lee et al. (2018), 
Real et al. (2020) 

Sample 
inefficiency, 
convergence 
speed 

Model 
adaptation, 
hyperparame
ter search      

Domain 
Adaptation 
& Transfer 
Learning 

Cross-
domain 
generalizati
on 

Few-shot domain 
adaptation, meta-
transfer learning 

Cai et al. (2021), 
Tsai et al. (2020) 

Quick 
adaptation, 
knowledge 
transfer 

Cross-lingual 
NLP, 
healthcare 
diagnostics, 
cross-domain 
image 
recognition  

 
The Structure of Literature Survey  
This is literature survey section consist of 
different researcher overview regarding their 
opinion about Meta learning subdomains, Meta 
learning approaches ,challenges limitation and 
result observations.  
Meta Learning is a process that helps models 
learns new and unseen tasks on their own. 
Figure 1 depicts the structure of literature 
survey of Meta learning. There are various 
subdomains of meta learning namely 
Optimization based Meta learning, Metric Based 
Meta Learning, Model Based Meta Learning, 
Bayesian Meta Learning, Few Shot One Shot 
Zero Shot Learning, Meta Reinforcement 
Learning, Meta Learning for Neural Architecture 
Search, Gradient Free Meta Learning, Meta 
Learning for Domain Adaption and Transfer 
Learning. 
Researcher Chelsea Finn et al. [11][22] propose 
an algorithm for meta-learning that is model-
agnostic, in the sense that it is compatible with 
any model trained with gradient descent and 
applicable to a variety of different learning 
problems, including classification, regression, 
and reinforcement learning. The goal of meta-
learning is to train a model on a variety of 

learning tasks, such that it can solve new 
learning tasks using only a small number of 
training samples. In their approach, the 
parameters of the model are explicitly trained 
such that a small number of gradient steps with 
a small amount of training data from a new task 
will produce good generalization performance 
on that task. In effect, method trains the model 
to be easy to fine-tune. Authors demonstrate 
that this approach leads to state-of-the-art 
performance on two few-shot image 
classification benchmarks, produces good 
results on few-shot regression, and accelerates 
fine-tuning for policy gradient reinforcement 
learning with neural network policies. 
The researcher Finn et al., Nichol et al. and Linn 
et al.[11][22] proposed the goal is to learn an 
optimization strategy by that allows models to 
quickly adapt to new tasks. Optimization-based 
methods, which are predominant among meta-
learning solutions for parametric models, 
primarily focus on optimizing the initialization 
of the model parameters used during   the 
training procedure. The rationale behind this 
approach is that effective initialization can 
expedite the adaptation of model parameters to 
new tasks with minimal optimization steps. 
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Examples of such schemes include the model 
agnostic meta-learning (MAML) algorithm and 
its variations [6], [7]. These methods may be 
extended to the design of other training 
algorithm hyper parameters such as the 
learning rate. Existing optimization-based 
methods that address model initialization can be   
further categorized into second-order and first-
order algorithms, distinguished by their 
utilization of second-order derivatives and first-
order gradient information. Additionally, 
modular meta-learning presents a distinct 
optimization-based approach that relies on the 
recombination of shared modules to address 
individual tasks[16]. The key methods are 
Model-Agnostic Meta-Learning (MAML) The 
initial model parameters are optimized so that a 
few gradient updates adapt it to a new task. 
Reptile are First-order approximation of MAML 
that simplifies the computation. Meta-SGD 
learns not just initialization but also update 
rules. There are application are few shot image 
classification, Adaptive robotics, Reinforcement 
learning. 
 

 
Figure 1 Literature Structure of Meta learning 

subdomains 
               

Metric-based approaches, according to Snell et 
al. [60], work on the premise that tasks in the 
environment have a common feature 
representation mapping that makes it possible 
to measure how similar data points are. The 
objective is to acquire a similarity function 
enabling a model to categorize new instances 
based on their proximity to established 
instances. These methods make it easier to use 
nonparametric predictive models without 
having to train them on new tasks by meta-
learning a similarity metric from data from 

many tasks. Siamese Network uses a distance 
metric (e.g., Euclidean distance) between 
embedding’s of two images to determine 
similarity. Matching Networks Learns an 
embedding space and classifies new instances 
via a nearest-neighbor approach Notable 
examples of modern metric-based meta-
learning methods include matching networks 
[3], prototypical networks [4], and relational 
networks [5].Prototypical Networks are 
Computes class prototypes and classifies new 
points based on distance. While aligned with the 
empirical Bayes methods seen in Gaussian 
Processes, the focus here is on collecting data 
from distinct tasks. However, due to their less 
frequent adoption in engineering problems, 
parametric models will be the primary focus of 
this monograph, leading to limited elaboration 
on metric-based meta-learning. Application 
based on metric meta learning are One shot 
facial recognition, handwriting recognition and 
Medical imaging. 
Graves et al. [61] and Ravi and Larochelle et al. 
[62] proposed Model-based meta-learning 
involves creating models that have a memory 
part, which allows them learn rapidly from only 
a limited amount of examples. Examples of these 
kinds of models are Memory-Augmented Neural 
Networks (MANNs), Neural Turing Machines 
(NTMs), and meta-LSTM. Memory-Augmented 
Neural Networks use external memory, such as 
a differentiable memory module, to keep 
learned representations. Model-based 
approaches, on the other hand, involve 
optimizing a hypermodel that directly turns a 
task's training set into a model. There are 
numerous types of neural networks that are 
able to do this translation, including recurrent 
neural networks, convolutional neural 
networks, or hypernetworks. A straightforward 
example of model-based meta-learning uses the 
training set of a new task to refine a context 
vector that governs the operation of a model 
shared across tasks. Neural Turing Machines 
(NTMs) employ a memory matrix and learn 
read/write operations. Meta-LSTM uses LSTMs 
to derive update rules for neural networks 
instead of relying on backpropagation 
Gordon et al. [23] provide thoughts on Bayesian 
Meta Learning. It uses probabilistic models to 
improve both the ability to estimate uncertainty 
and the ability to generalize. Bayesian MAML 
improves on MAML by learning a distribution 
over model parameters instead of using a fixed 
initialization. Conditional neural processes are 
used by CNAPs (Conditional Neural Adaptive 
Processes) to adapt to each task. PACOH (PAC-
Bayes Optimization based Meta Learning) is a 
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Bayesian optimization framework that has been 
specifically designed for meta learning. 
“One-shot Learning of Object Categories” by Fei-
Fei, Fergus, and Perona [63] is one of the earliest 
approaches that use meta-learning for object 
recognition tasks. Instead of starting from the 
beginning, the authors utilized insights from 
previously acquired categories, regardless of 
how distinct these categories might be. This 
hypothesis was conducted via a Bayesian 
setting: The authors extracted “general 
knowledge” from previously learned categories 
and represented it in the form of a prior 
probability density function in the space of 
model parameters. Given a training set, 
regardless of how small, the authors updated 
this knowledge and produced a posterior 
density that could be used for object 
recognition. Their experiments showed that this 
was a productive approach, and that some 
useful information about categories could have 
been obtained from a few training examples. 
“One-shot Learning of Simple Visual Concepts” 
by Lake, Salakhutdinov, Gross, and Tenenbaum 
[24] works in the domain of handwritten 
characters, an ideal setting for studying one-
shot learning at the interface of human and 
machine learning. It presents a Hierachical 
Baysesian Model that learns visual concepts 
from a single example by inferring a 
probabilistic program. Handwritten characters 
contain a rich internal part structure of 
penstrokes, providing a good a priori reason to 
explore a parts-based approach to 
representation learning. The authors propose a 
new model of character learning based on the 
induction of probabilistic part-based 
representations. The model’s approach, based 
on compositionality and causality, allows it to 
generate novel examples and perform one shot 
classification with human level performance, 
outperforming deep learning models on 
Omniglot dataset. Given an example image of a 
new character type, the model infers a sequence 
of latent strokes that best explains the pixels in 
the image by drawing on a broad stroke 
vocabulary abstracted from many previous 
characters. This stroke-based representation 
guides the generalization of new examples of the 
concept. This work aimed to bridge the gap 
between human ability to quickly learn concepts 
from minimal data and data-intensive 
requirements of traditional machine learning 
algorithms. 
“One-shot Learning with a Hierarchical 
Nonparametric Bayesian Model” by 
Salakhutdinov, Tenenbaum, and Torralba [65] 
leverages higher-order knowledge abstracted 
from previously learned categories to estimate 

the new category’s prototype as well as an 
appropriate similarity metric from just one 
example. These estimates are also improved, as 
more examples are observed. As illustrated in 
figure 2, consider how human learners seeing 
one example of an unfamiliar animal, such as a 
“wildebeest,” can draw on experience with many 
examples of “horse,” “cows,” “sheep,” etc. These 
similar categories have similar prototypes and 
share similar variations in their feature space 
representations. If we can identify the new 
example of “wildebeest” as belonging to this 
“animal” super-category, we can transfer an 
appropriate similarity metric and thereby 
generate informatively even from a single 
example. The algorithm that the authors used is 
a general-purpose hierarchical Bayesian model 
that depends minimally on domain-specific 
representations but instead learns to perform 
one-shot learning by finding more intelligent 
representations tuned to specific subdomains of 
a task. 
“One-shot Learning by Inverting A 
Compositional Causal Process” by Lake, 
Salakhutdinov, and Tenenbaum [66] tackles 
one-shot learning via a computational approach 
called Hierarchical Bayesian Program Learning 
that utilizes the principles of composition and 
causality to build a probabilistic generative 
model of handwritten characters. This is  
compositional because characters are 
represented as stochastic motor programs 
where the primitive structure is shared and 
reused across characters at multiple levels, 
including strokes and sub-strokes. Given the 
raw pixels, the model searches for a “structural 
description” to explain the image by freely 
combining these elementary parts and their 
spatial relations. This is causal because strokes 
are not modeled at the level of muscle 
movements, but are abstract enough to be 
completed by higher-order action. The model 
was evaluated on the Omniglot dataset, a 
challenging benchmark for one-shot 
classification and generation tasks, achieving 
human-level performance. The model's ability to 
produce human-like performance on tasks 
beyond simple classification, such as generating 
new examples of a learned concept, 
demonstrates a deeper conceptual 
understanding. In essence, the paper shows that 
by modeling the underlying compositional and 
causal processes that create visual concepts, a 
system can learn to recognize and generate new 
visual classes from very few examples, 
mimicking human-like one-shot learning 
abilities. 
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Few Shot One Shot Zero Shot Learning 
Few shot, one shot and zero shot learning 
enable models to generalize from limited or no 
train examples. Few Shot Learning methods are 
prototypical network, MAML and Meta-
LSTM.One shot Learning methods are Siamese 
Networks and Matching network. Whereas zero 
shot learning methods are Semantic embeddings 
(Word2Vec,GloVe,FastText) and Generative 
Models which include Generative adversarial 
Network and Variational Autoencoder(VAE). 
Applications are Image classification with 
limited data, zero-shot machine translation and 
few shot medical diagnosis. 
Meta Reinforcement Learning 
RL2 (Reinforcement Learning Squared) uses an 
RNN to encode task information for quick 
adaptation.VariBAD (Variational Bayes Adaptive 
RL) is Bayesian inference-based method for 
adaptive RL.Model Agnostic Meta Learning 
(MAML) are useful in solving reinforcement 
learning problems. 
Meta Learning for Neural Architecture Search 
Meta Learning for neural architecture search 
(NAS) is to automate the search for optimal 
neural network architectures. Key Methods 

include ENAS (Efficient NAS) uses 
reinforcement learning for efficient architecture 
search.  DARTS (Differentiable Architecture 
Search) uses gradient-based optimization for 
NAS. AutoML-Zero is Evolutionary-based NAS 
framework. Application examples includes 
Automated deep learning ,  model design Hyper 
parameter tuning and Neural network 
optimization 
Gradient Free Meta Learning 
Gradient Free Meta Learning techniques is meta 
learning techniques that do not rely on gradient 
based optimization. The key methods used in 
Gradient free meta learning include black box 
meta learning and evolutionary algorithms for 
meta learning. Applications are evolutionary 
based model adaptation and Hyperparameter 
search. 
Meta Learning for Domain Adaption and 
Transfer Learning 
It enable models to transfer knowledge across 
different domains with minimal retraining. The 
key methods are few shot domain adaptation 
and Meta learning for cross domain tasks. 
Applications are Cross-lingual NLP models, 
Cross-domain image recognition, AI-assisted 
healthcare diagnostics 

 
Table 2: Meta-Learning for Few-Shot Learning in Specialized Domains 
Paper / 
Author(s) 

Meta-
Learning 
Approach 

Challenges Limitations Results & Observations 

Gharoun et 
al. (Meta-
Learning 
Approaches 
Survey),2024 

Comprehensi
ve review of 
meta-
learning 
approaches 
in few-shot 

- Scalability and 
efficiency 
- Generalization 
across diverse 
tasks 

- Full survey; 
limitations context-
dependent 

Reviews state-of-the-art 
meta-learning paradigms 
and provides insights into 
recent advances and 
research directions in few-
shot learning 

Verma et al. 
(Meta-
Learning for 
Generalized 
Zero-Shot 
Learning),20
20 

Model-
Agnostic 
Meta-
Learning 
(MAML) 
integrated 
with 
Wasserstein 
GAN 

- Training 
generative models 
with few seen 
class samples 
- Generalizing to 
unseen classes 
- Bias towards 
seen classes in 
GZSL 

- GAN training 
stability 
- Mode collapse on 
fine-grained 
datasets 
- Requires attribute 
vectors for classes 

Significant improvement in 
zero-shot (ZSL) and 
generalized zero-shot 
learning (GZSL) tasks with 
few-shot seen samples; 
relative improvements up 
to 27.9% over state-of-the-
art on standard 
benchmarks (CUB, AWA2, 
aPY). Meta-learned GANs 
generate high-quality 
samples enabling better 
unseen class generalization. 
Proposed zero-shot task 
distribution enhances 
performance[57][58] 
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Vinyals et al. 
(Matching 
Networks for 
One-Shot 
Learning),20
16 

Metric-based 
Meta-
Learning 
with 
attention 
and memory 

- Overfitting with 
few examples 
- Need to rapidly 
adapt to new 
classes 
- Defining 
appropriate 
similarity metric 

- Requires episodic 
training 
- High 
computational cost 
for large support 
sets 

Achieved state-of-the-art 
one-shot accuracy on 
Omniglot and ImageNet; 
episodic training mimics 
test conditions improving 
generalization. 
Demonstrated effectiveness 
of attention-weighted 
nearest neighbor 
classification in embedding 
space [33] 

Snell et al. 
(Prototypical 
Networks for 
Few-Shot 
Learning),20
17 

Metric-
based: 
Learning 
class 
prototypes 
and 
distances 

- Limited labeled 
examples per class 
- Handling class 
variability 

- May not handle 
complex task 
distributions 

Robust few-shot 
classification via 
embedding with learned 
prototypes; simple and 
effective, scalable. Shows 
strong performance on 
benchmark datasets like 
miniImageNet [60] 

Finn et al. 
(MAML: 
Model-
Agnostic 
Meta-
Learning),20
17 

Optimization
-based Meta-
Learning 

- Fast adaptation 
to new tasks with 
few samples 
- Computational 
demands of nested 
gradients 

- Sensitive to 
hyperparameters 
- Requires 
differentiable 
models 

Provides a model 
initialization enabling quick 
fine-tuning; broadly 
applicable across domains 
(RL, vision). Forms basis of 
ZSML in zero-shot 
learning[22] 

Other 
Generative 
Models in 
Zero-Shot 
Learning (f-
CLSWGAN, 
CVAE-
ZSL),2017-
2018 

Generative 
Adversarial 
Networks 
and 
Variational 
Autoencoder
s for 
Synthetic 
Data 

- Training 
instability of GANs 
- Data imbalance 
- Poor quality on 
unseen class 
generation 

- Often require large 
seen class data 
- Hard to ensure 
sample diversity 

Generative models alleviate 
bias in GZSL by 
synthesizing unseen class 
samples; inferior when 
training data for seen 
classes is scarce 

 
Meta-Learning For Few-Shot Learning In 
Specialized Domains 
Cyberspace Security and Intrusion Detection 
In the cybersecurity domain, signaling the high 
stakes of identifying zero-day and emerging 
attacks under data scarcity, meta-learning offers 
promising solutions. Traditional supervised 
models require large-scale labeled logs, which 
are often unavailable, making few-shot and 
zero-shot learning vital for robust intrusion 
detection [3]. Meta-learning frameworks in this 
realm employ metric-based and optimization-
based techniques to detect anomalies and 
classify attack types with limited samples. 
For instance, deep neural network architectures 
and meta-learning strategies have been 
proposed to distinguish network traffic 
patterns, achieving high detection rates even 
when trained with minimal malicious samples 
[24]. Furthermore, continual few-shot learning 
methods enable intrusion detection models to 
adapt online to new attack types without 
forgetting previous knowledge, a critical 

requirement for evolving security landscapes 
[25]. By enabling fast adaptation and 
generalization across diverse and changing 
threats, meta-learning strengthens the resilience 
and responsiveness of cybersecurity defenses. 
Medical Imaging and Bioacoustics 
Applications 
Medical imaging frequently encounters the 
challenge of limited annotated data, 
compounded by diversity across imaging sites 
and patient populations. Site-agnostic meta-
learning addresses this by learning generalized 
initializations that adapt efficiently to new sites 
with few examples, improving classification 
accuracy in diagnosing conditions such as 
autism spectrum disorder [26]. These methods 
handle heterogeneity in imaging protocols and 
patient demographics, yielding robust clinical 
models from scarce data. 
Bioacoustic event detection similarly benefits 
from few-shot learning methodologies. Instead 
of deploying data-hungry deep learning, some 
approaches leverage classical machine learning 
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techniques augmented by meta-learning to 
classify rare acoustic events in wildlife 
monitoring, balancing accuracy with 
computational efficiency [27]. Moreover, the 
integration of meta-learning with Neural 
Architecture Search (NAS) in medical image 
analysis optimizes network structures for few-
shot tasks, delivering improved segmentation 
and classification performance while reducing 
reliance on large annotated datasets [28]. 
These advances demonstrate meta-learning’s 
transformative impact on healthcare and 
ecological monitoring, enabling effective 
analysis despite sparse data. 
Financial Forecasting and Urban 
Infrastructure Monitoring 
Financial markets are characterized by volatility 
and limited data in novel conditions, challenging 
traditional predictive models reliant on large 
historical datasets. Meta-learning and few-shot 
learning frameworks, incorporating model-
agnostic meta-learning and Siamese networks, 
enable financial models to forecast price 
movements and volatility under unfamiliar 
market states without extensive retraining, 
facilitating adaptive and resilient financial 
modeling [6]. 
Urban infrastructure monitoring, particularly 
through distributed acoustic sensing (DAS), also 
leverages meta-learning for few-shot 
classification of diverse event types with 
minimal labeled samples. By exploring multiple 
data preprocessing techniques and embedding 
networks trained on meta-datasets, these 
frameworks achieve precise classification while 
accommodating varied sensor modalities [29]. 
This capability is particularly valuable for 
detecting anomalies or events in complex urban 
environments with limited annotated data, 
underpinning smart city applications. 
Thus, meta-learning enhances the effectiveness 
and adaptability of models in both financial and 
urban infrastructure domains where data 
scarcity and domain heterogeneity pose 
significant challenges. 
Challenges and Limitations in Meta-Learning 
for Few-Shot Settings 
1. Data Distribution Shifts and Domain 
Adaptation 
A fundamental challenge in meta-learning arises 
from distributional shifts between training and 
deployment domains. Cross-domain 
generalization remains difficult due to differing 
feature distributions, class semantics, or data 
modalities, which can substantially degrade few-
shot learning performance. Addressing this 
requires domain-adaptive meta-learning 
approaches that explicitly model or compensate 
for such shifts, facilitating transferability [30]. 

For example, site-agnostic meta-learning 
methods in medical imaging explicitly optimize 
for robust adaptation across heterogeneous 
imaging centers, preserving performance 
despite domain variations [26]. Nonetheless, 
fully overcoming domain mismatch remains an 
open problem, especially in complex multimodal 
and noisy environments. 
2. Computational Complexity and Scalability 
Many meta-learning techniques, especially those 
based on optimization (e.g., MAML), involve 
costly second-order derivative computations, 
limiting scalability and applicability in resource-
constrained settings. This computational burden 
limits real-time adaptation and deployment on 
edge devices. 
To mitigate this, approaches such as first-order 
gradient approximations reduce overhead with 
minimal performance loss [12]. Additionally, 
hardware-aware meta-learning algorithms 
incorporate quantization and other hardware 
constraints upfront, optimizing learning 
efficiency and convergence speed without 
compromising accuracy [31]. These 
developments are crucial for meta-learning's 
transition from research prototypes to practical, 
scalable solutions. 
3. Overfitting and Model Bias in Meta-Training 
Overfitting to meta-training tasks is another 
significant concern. Meta-learners often develop 
biases toward tasks seen during training, 
limiting their adaptability to novel or unrelated 
tasks. Investigations into MAML reveal that 
feature reuse rather than rapid feature 
adaptation dominates its generalization, 
prompting the development of simplified 
algorithms and regularization methods to 
balance these effects [11]. 
Entropy-based methods and task-agnostic meta-
learning strategies have also been proposed to 
combat model bias and overfitting, enhancing 
the generalization across diverse unseen tasks 
[12]. Despite these advances, understanding and 
controlling meta-learner biases remains a key 
research direction to ensure broad applicability 
 
Evaluation Metrics and Benchmark Datasets 
For Meta-Learning 
Popular Benchmarks for Few-Shot and Zero-
Shot Learning 
Benchmark datasets such as Omniglot, mini-
ImageNet, and Tiered-ImageNet have become 
standard for evaluating meta-learning 
performance, providing controlled settings for 
few-shot classification with well-defined splits 
of seen and unseen classes [5]. Omniglot offers a 
character recognition challenge with many 
classes but few examples per class, ideal for 
testing generalization. Mini-ImageNet and 
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Tiered-ImageNet provide more complex natural 
image datasets with increasing difficulty and 
diversity. 
While widely adopted, limitations exist, 
including domain specificity and the challenge of 
replicating real-world heterogeneous data 
distributions. Domain-specific datasets in 
cybersecurity, medical imaging, and others are 
increasingly used to complement these 
benchmarks, highlighting diverse application 
challenges. 
 
Common Evaluation Metrics 
Evaluation metrics in few-shot learning typically 
include accuracy, precision, recall, and F1-score, 
especially for classification tasks [33]. Recent 
advances propose novel metrics adapted to 
specific domains. For instance, mean average log 
percentage error (MALPE) has been introduced 
in forecasting under limited data as a robust 
alternative to Mean Absolute Percentage Error 
(MAPE), mitigating bias and improving fairness 
in evaluation [34]. 
Such metrics ensure that performance 
assessments account for the unique difficulties 
inherent in few-shot setups, including class 
imbalance, variability, and sample scarcity. 
 
Comparative Performance of Meta-Learning 
Approaches 
Comparative studies show that no single meta-
learning approach universally dominates; 
rather, relative performance depends on data 
type, task difficulty, and resource availability. 
Metric-based methods often provide efficient 
classification with good generalization, 
especially when paired with embedding 
augmentation [10]. Optimization-based models 
excel in rapid parameter adaptation but may 
incur computational costs, balanced by first-
order variants [35]. 
Understanding these trade-offs is essential in 
selecting appropriate methods tailored to 
application constraints and objectives. 
 
Future Directions and Open Problems In 
Meta-Learning For Few-Shot Learning 
Enhancing Generalization and Robustness 
across Tasks 
Future meta-learning research aims to enhance 
model generalization and robustness in the face 
of task heterogeneity and multimodal data 
distributions. Addressing complex, multimodal 
tasks requires methods that effectively integrate 
diverse input types and adapt to shifting task 
domains [36]. Expanding meta-learning’s 
capacity to generalize across broader 
distributions and uncertainty conditions 
remains a critical goal [1]. 

 
Integration with Multimodal and Cross-Domain 
Learning 
Leveraging multimodal information and 
semantic concepts promises to bridge gaps in 
zero- and few-shot learning by enriching 
representations and enabling cross-modal 
transfer [14]. Meta-learning models capable of 
learning shared latent spaces across modalities 
can better exploit the complementary nature of 
data sources, improving prediction accuracy and 
robustness in complex real-world settings [18]. 
 
Meta-Learning Under Resource Constraints and 
Real-World Deployment 
Efficient meta-learning compatible with 
hardware and computational resource 
constraints is vital for real-world deployment. 
Advances in hardware-aware meta-learning 
accommodate quantized networks and optimize 
training under memory and speed limitations, 
facilitating few-shot learning at the edge [31]. 
Simultaneously, integrating meta-learning into 
scalable AI systems requires balancing 
adaptation speed, accuracy, and resource usage, 
a vital research frontier for making few-shot 
learning ubiquitous. 
 
In conclusion, meta-learning has established 
itself as a versatile and powerful framework 
addressing the fundamental challenges of zero-, 
one-, and few-shot learning across various 
domains. By systematically learning how to 
learn, these approaches provide robust, scalable 
solutions that extend machine learning’s 
applicability to situations marked by data 
scarcity and task variability. Ongoing advances 
in architectures, optimization techniques, 
domain adaptation, and resource-aware designs 
continue to expand its horizons, promising 
impactful applications in security, medicine, 
finance, and beyond. 
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