

Web Based Academic Information System for Academic Communication

Dilip P. Chavan

Kalpataru Research & Development, Pune

Email: dilip.chavan998799@gmail.com

Peer Review Information	Abstract
<i>Submission: 08 Nov 2025</i> <i>Revision: 25 Nov 2025</i> <i>Acceptance: 10 Dec 2025</i>	
Keywords	
<i>Academic Support, Chatbots, Timetable Management, Student Dashboard, AI in Education, Student Productivity, student data, Assignment and homework upload, personalized planner</i>	<p>The information system for academic communication uses advanced collaborative tools for effectiveness in handling the overall activities. The artificial intelligence algorithms incorporated along with various techniques to achieve the effectiveness in obtaining the goal oriented tasks. The typical academic activities like sharing of resources and academic calendar amongst the entities such as faculties and students in collaboration for achievement of desired goals. In the era of technology, online platforms are in a position to facilitate smooth communication between learners and instructors. This paper assesses the Intolerant platform, as detailed in the given html wireframe, evaluating its functionality and design in a bid to comprehend its potential in enhancing learning interactions. The research identifies major features such as smooth messaging, assignment management facilitation, and monitoring of academic progress.</p>

Introduction

Academic communication is viewed as indispensable in academic institutions to deliver knowledge efficiently, collaborate effectively, and to manage. New solutions, like the web, replace old ones like face-to-face meetings, notice boards printed through printing services, and others [1]. The present paper discusses the improvements of academic communication through the functionality of messaging, multimedia file exchange, sending alerts, and avenues for response feedback by the system [2]. The world is converging, and this poses unprecedented challenges to education, such as resource allocation and the need for continuous evaluation of IT. The integration of information technology into educational institutions is relevant to efficiency and effectiveness. Government policies encourage the extension of

compulsory education, matching education to industry requirements, and supporting alternative career pathways to universities [3]. However, many institutions are still facing challenges such as lack of integrated evaluation systems, inefficiencies due to manual data entry, and clashes in scheduling [4, 5]. This research aims to create a web-based academic information system that will facilitate data processing, service provision, and educational quality improvement [6].

The growing dependence on digital solutions to education calls for smart platforms that assist students above the conventional learning practices. Intolerant is conceptualized as an all-encompassing academic assistant that combines various functionalities to improve student productivity and communication [6, 7]. In the modern fast-paced education system, students

tend to be saddled with the work of handling several academic obligations, ranging from monitoring assignments and deadlines to scheduling studies and accessing required resources. This scenario points to the necessity of an integrated digital academic support system that can mitigate these issues by providing seamless access to necessary academic tools [8]. Intelearn responds to these issues by offering a one-stop digital academic assistant that integrates artificial intelligence, automation, and ease of use. The system's chatbots, Cabot Helper, is central to ensuring that students are provided with timely help on their coursework, schedules, and academic questions [9]. Second, the platform's dashboard brings important academic information together, providing learners with a centralized view of their calendars, lessons, and reminders [10]. This work addresses the evolution process, features, and advantages of Intelearn in contemporary education settings, assessing its effect on student productivity as well as active participation. Last but not least, it also offers a complete analysis of the role played by intelligent automation as well as human-centered design to improve digital learning experiences [11].

Literature Review

Davis (1989) proposed a Technology Assessment Model (TAM) to explain user acceptance of technology. The TAM identifies 'perceived usefulness' and 'perceived ease-of-use' as the antecedents to 'behavioral intentions' to use a technology. Extensive attention in previous TAM research dealt with business software in a business context. More effort is required to investigate research results involving different technologies and user populations [12]. In response, this paper reports on research work that investigated the applicability of a modified version of TAM in explaining students' acceptance of web based technologies for their courses. The target IT presented herein is a web-based Educational Information System for Enhanced Learning (EISEL) [13]. The results of the modified version of TAM are discussed. The technology and user group are new to the IT acceptance and adoption research. The TAM constructs were operationalized in the context of the EISEL. This research is a first attempt (using the first version of EISEL) to understand students' beliefs and perceptions in relation to using a web based learning tool [14].

The paper suggests that creation and management of accurate, up-to-date information regarding a students' academic career is

critically important in the university as well as colleges. Student information system deals with all kind of student details, academic related reports, college details, course details, curriculum, batch details, placement details and other resource related details too [15]. It tracks all the details of a student from the day one to the end of the course which can be used for all reporting purpose, tracking of attendance, progress in the course, completed semesters, years, coming semester year curriculum details, exam details, project or any other assignment details, final exam result and all these will be available through a secure, online interface embedded in the college's website. It will also have faculty details, batch execution details, students' details in all aspects, the various academic notifications to the staff and students updated by the college administration [16]. The paper suggests that for every organization, the management information system is not only a computer-based human-machine system that can support and help the administrative supervisor but also an open technology system for society [17]. It should supply the interaction function that face the organization and environment, besides gather, transmit and save the information [18]. The authors start with the intension of contingency theory and design a web-based management information system for academic degree & graduate education which is based on analyzing of work flow of domestic academic degree and graduate education system [19].

Methodology / Experimental

A. Materials/Components/Flowchart/Block

The project adopts a systematic software development life cycle: Requirement Analysis: Gathering data from schools to identify particular needs. Definition of System: Developing user-friendly interfaces and backend database schema [20]. Development: Putting features like login authentication, grade management, and messaging system in place. Testing and Quality Assurance: Developing reliability and efficiency through testing. Deployment and Training: Deployment of the system in schools and training users [21].

The research is qualitative in nature, with a content analysis of the Intelearn wireframe layout to evaluate its usability and performance as a means of educational communication. Content Analysis: Analysis of the wireframe structure, design, and functionalities to determine important functionalities. Comparative Analysis: Comparative analysis of Intelearn with comparable education platforms to ascertain strengths and weaknesses [22].

User Experience Evaluation: Testing user interaction simulations to determine navigation ease, accessibility, and user-friendliness overall. Intelearn was built using web technologies such as HTML, CSS, and JavaScript for frontend development, whereas JavaScript-based logic was employed for chatbot and messaging functionality. The chatbot module (AcadBot Helper) was implemented using rule-based responses and natural language processing (NLP) based techniques to offer relevant academic assistance. The methodology adopted a systematic development process, starting with requirement analysis and system design [23]. The development life cycle consisted of the following major phases: Requirement Analysis: Determining user requirements via surveys and research System Design: Organizing database schemas, API endpoint definition, and UI/UX component design. Implementation: Programming modules for the chatbot, dashboard, messaging system, and timetable. Testing & Optimization: Usability testing, performance analysis, and algorithm optimization for performance. The system architecture consists of: HTML, CSS, JavaScript for dynamic and interactive user interfaces, API integration for chatbot replies, enabling asynchronous communication between system components, Storage of student information, such as schedules, messages, and chatbot interactions [24]. User Interface Design: Providing a responsive, intuitive design for ease of use and maximized user experience. By iterative development and gathering feedback, Intelearn was constantly improved to more accurately address user needs, providing robustness, scalability, and efficiency in its operations.

The Doubt forum provides key features like: User Authentication which secures login and registration for students and faculty. Discussion Threads in which users are able to post questions, answer inquiries, and track discussions. Search and Filtering in which queries can be divided by subject, popular trends, and tags. Options like following other users, seeing top contributors, and monitoring personal activity is also available in the website.

B. Features of Intelearn

Intelearn incorporates the following modules of prime importance to offer a comprehensive academic support experience: Student Profile Dashboard: Presents customized academic data, such as ongoing courses, assignments, and impending deadlines. AcadBot Helper (Chatbot): Offers instant academic support by answering


questions related to course content, timetables, and study advice. The chatbot also incorporates AI-powered suggestions based on user activity. Messaging System: Allows smooth communication between students and staff so that queries can be addressed immediately and academic discussions facilitated. Timetable Planner: Plans study schedules and class timetables so that students can effectively utilize their study time [25]. Notice Board: Publishes all the important academic notifications so that students receive updates on institutional activities, deadlines, and opportunities. Intelearn's modularity provides room for future upgrade, including the integration of AI-based learning recommendations, peer collaboration features, and greater integration with learning management systems (LMS).

Results & Discussion

A. System workflow of doubt forum

The system has a disciplined flow where users engage with the discussion module, and inputs are kept secure. Entity-relationship diagrams represent user profiles, questions, answers, and their metadata. User Categories like students can ask questions, respond to peers, and subscribe to discussions.

Faculties can respond to queries, moderate a discussion, and mark important responses. Admin can administer users, moderate material, and monitor forum usage.

B. Outcome of resources sharing and other features

Increased efficiency of communication within educational institutions. Higher involvement and interaction between students and professors. Decrease in reliance on disjointed communication channels. Centralized system for academic resource management and announcements.

C. Advantages of Integration in Academic Websites

Increased Learning: Promotes collaborative problem-solving outside of lectures. 24/7 Availability: Enables students to learn at their own pace. Enhanced Faculty Involvement: Professors can offer insights and resources in an organized way. Knowledge Archival: Keeps a database of responded questions for future use. Real-Time Updates: Students get notifications on answers and popular conversations.

The Monthly Planner function adds value to the INTELEARN system by incorporating an interactive scheduling facility for students and teachers. This planner enables users to schedule tasks, prioritize, and manage school schedules effectively. The main features of this feature are: Interactive Calendar: A grid-based graphical display shows the whole month, and users can click on any day to see or enter tasks. Task Management System: Create, modify, and delete tasks, prioritizing them by levels (High, Medium, and Low) to facilitate workflow. User-Friendly Interface: The planner utilizes a minimalist design with color-coded task priorities to make navigation and accessibility convenient. Persistent Data Storage: Stored in local storage, the planner preserves tasks even after browser closing, maintaining continuity in managing tasks. Responsive Design: Responsive across various devices, enabling teachers and students to organize schedules on desktops, tablets, or smartphones. This element greatly helps INTELEARN's objective to improve educational communication by offering a streamlined tool for education planning and time management.

The flowchart depicts the central operations of the Discussion Forum system, emphasizing user authentication, profile handling, question-answer interactions, and admin features. The process begins with User Registration, wherein a new user inputs credentials to establish an account. Upon registration, they go on to User Login. If a user forgets their password, they may employ the Forget Password feature to reset it

through email verification. After logging in, the user has control over their Profile, which they can view and edit personal details. Users within the system can Add Questions, and these are shown in the forum. Admin users have the right to Delete Questions when needed. Users can Add Answers to a question, which helps enhance the discussion. All users can view the Answers through the View Answers page. The site facilitates social interaction through the ability to follow and Un-follow Profiles. The system also identifies Top Contributors and Trending Tags, highlighting popular users and most discussed topics on the home page. Admins exclusively access the Admin Dashboard, from which they can control user content, such as question moderation. The system terminates when the user logs out or leaves the platform. The flowchart clearly shows how various users operate within the discussion forum.

The diagram demonstrates the order of actions that every kind of user executes upon successful login. 1. Start and User Login: The flow starts at the start node, after which comes the user login step. This means that both teachers and students need to authenticate themselves first before they move forward. Authentication could be providing credentials like a username and password. 2. Role-Based Actions: After logging in, the system checks if the user is a Teacher or a Student, and this results in different flows: A. Teacher Pathway: Take Classes: Conducting classes is the core responsibility of a teacher. This might include lecturing, reading out study material, or communicating with students.

Assign Assignments: Once classes have been taken, teachers may assign homework, projects, or any other evaluation to students. B. Student Pathway: Attend Classes: Students are required to attend regular classes. This might be lectures in person or through online mediums, discussions, or group work. Solve Assignments: After students attend classes, they are given assignments by teachers and are required to do them. Access Study Materials: Besides assignments, students can access study materials, which could be textbooks, lecture notes, recorded lectures, or other study materials. 3. Manage Attendance: There is a distinct Manage Attendance process shown between the teacher and student flows. This would be a common function where: Teachers take attendance for their students. The attendance records of students are recorded automatically or manually. The system can produce student participation reports. 4. Structure of the Flowchart: The flowchart uses a top-down hierarchical structure that begins with authentication and splits into separate

teacher and student workflows. It contains sequence steps, with one activity directly following another in a logical order. The Manage Attendance function is a common process, which is used for teachers and students alike. This flowchart successfully emulates an instructional system where instructors and students do not have identical roles. Teachers teach classes and give assignments, whereas students come to class, do assignments, and retrieve content. The function of attendance management provides accountability of participation. This kind of system can be made available in Learning Management Systems (LMS) or web-based learning applications for efficient teacher-student interaction.

A. For generating responses to chats, Intelearn utilizes basic NLP operations, which are:

Picks user questions based on the given keywords and gives back matching answers. Probability-based Response Selection: Gauges potential responses and chooses the most appropriate one depending on previous interactions and response correctness. Message Routing Logic: Routes student questions to the concerned faculty or automated responses for effective query settlement.

B. The timetable optimization algorithm also follows:

Greedy Algorithm: Allocates most efficient study periods according to student availability, allocating high-efficiency study periods first. Graph-Based Scheduling: Applies conflict detection algorithms to prevent scheduling conflicts, adapting dynamically according to student needs. Constraint Satisfaction Models: Distributes study and leisure time equally, avoiding burnout.

Frontend Development (User Interface & Experience)

The frontend of such a site is for making a website easy to use and accessible for students, teachers, and administrators. It incorporates HTML, CSS, and JavaScript technologies such as React, Angular, or Vue.js to build responsive and dynamic pages. The frontend should accommodate modules like login pages, student dashboards, timetable views, attendance tracking, grade reports, notifications, and communication channels. Deployment of frameworks such as Bootstrap or Tailwind CSS makes the design mobile-friendly, while Web Sockets or AJAX facilitates real-time updates for live notifications and announcements.

2. Backend Development (Server-Side Logic & Processing) The backend is the intelligence of the system, receiving requests, processing data,

and communicating with databases. Node.js, Python (Django/Flask), or Java (Spring Boot) are popular backend technologies. The backend is composed of several units: User Authentication & Role Management: Provides secure logins via JWT (JSON Web Tokens) or OAuth for students, faculty, and admins. Business Logic Layer: Processes student enrollment, faculty assignment, and administrative workflow data. Data Processing & Analytics: Manages reports, analytics, and data visualization with NumPy, Pandas, or BI tools. 3. Database Management (Storing & Managing Data Efficiently) A strong database is needed to store and retrieve enormous amounts of institutional information, such as student information, grades, attendance records, assignments, fee structures, and faculty information. Relational databases such as MySQL, PostgreSQL, or SQL Server are popular, with NoSQL databases (MongoDB, Firebase) enabling real-time updates. Database normalization keeps redundancy to a minimum, and stored procedures and indexing improve query performance. 4. Authentication & Security (Data Protection & User Privacy) Security tops the agenda of an ERP system that is storing sensitive faculty and student data. The integration covers: Encryption: Protecting information with AES, SSL/TLS, and bcrypt hashing of passwords. Role-Based Access Control (RBAC): Granting permissions to students, faculty, and admins appropriately. Firewalls & Intrusion Detection: Protecting with WAF (Web Application Firewall) and IDS/IPS systems detecting potential threats. Two-Factor Authentication (2FA): Including additional layers of protection for login authentication. 5. Cloud & Hosting (Infrastructure & Deployment) Cloud infrastructure guarantees scalability, reliability, and security. This system can be deployed on AWS, Google Cloud, or Azure, taking advantage of: Load Balancers: To redirect incoming traffic and avoid server overload. Auto Scaling Groups: To manage greater user demand dynamically. Database Backups: Periodic backups using cloud storage and replication mechanisms. Serverless Functions: Employing AWS Lambda or Firebase Functions to run tasks cost-effectively. 6. Performance Optimization (Speed & Scalability) As a system processes thousands of users every day, performance optimization is imperative. Methods involve: Caching Mechanisms: Utilizing Redis or Memcached to cache data that is most frequently accessed. Lazy Loading & Code Splitting: To decrease initial load time for users. Asynchronous Processing: Utilizing message queues (RabbitMQ, Kafka) for operations such

as bulk email notifications and background jobs. CDN (Content Delivery Network): To distribute static resources across several servers for quicker access. 8. User Experience & Accessibility (Improving Interaction) a system like this has to provide a perfect user experience by concentrating on: Minimalistic & Clean UI: Providing simple navigation for students, instructors, and officials. Dark Mode & Custom Themes: Enabling users to make the interface comfortable. Accessibility Compliance: Following WCAG (Web Content Accessibility Guidelines) to assist users with disabilities. Multilingual Support: Offering several language options for inclusivity. 8. Notifications & Messaging System: To ensure that students and faculty are kept current, this needs to accommodate real-time messaging and notification. This entails: Push Notifications: Employing Firebase Cloud Messaging (FCM) for desktop and mobile notifications. Email & SMS Alerts: Interfacing with services such as Twilio, SendGrid, or AWS SES.

A. Limitations and Future Enhancements in doubt forum

1. Current Limitations:

- Users cannot edit questions or answers.
- Profile pictures cannot be updated.
- Lack of voting mechanisms for posts.

2. Proposed Enhancements:

- Enabling question/answer editing.
- Implementing up vote/down vote features.
- Admin functionalities such as blocking users and managing advertisements.
- Private messaging between users.

Conclusion

The creation of a specialized website for scholarly communication is an important advancement toward improving cooperation and knowledge dissemination in the electronic era. With the aim to overcome the weakness of current systems and integrate people-oriented design features, the targeted platform can shift scholarly communication in a new direction and promote global scholarly networks.

Reference

Mirajkar, R., Shinde, G., Mahalle, P.N., Sable, N. (2024). Mirajkar, R., Shinde, G., Mahalle, P.N., Sable, N. (2024). Future Internet Architecture: Applications, Challenges, and Design Issues. In: Choudrie, J., Mahalle, P.N., Perumal, T., Joshi, A. (eds) ICT for Intelligent Systems. ICTIS 2024. Lecture Notes in Networks and Systems, vol 1109. Springer, Singapore. https://doi.org/10.1007/978-981-97-6675-8_38

8_38. In: Choudrie, J., Mahalle, P.N., Perumal, T., Joshi, A. (eds) ICT for Intelligent Systems. ICTIS 2024. Lecture Notes in Networks and Systems, vol 1109. Springer, Singapore. https://doi.org/10.1007/978-981-97-6675-8_38

Shital M. Shrirao, Gitanjali R. Shinde, Parikshit N. Mahalle, Nilesh P. Sable, Vivek S. Deshpande, "Navigating Congestion in Wireless Sensor Network: A Comprehensive Survey", International Journal of Computer Networks and Applications (IJCNA), 11(4), PP: 428-448, 2024, DOI: 10.22247/ijcna/2024/27.

Mane, Dhiraj Kumar, Deshmukh, Shyam, Durgawale, Prakash M., Shirkande, Shrinivas T., Deokate, Sarika T. & Sable, Nilesh P. (2024) Privacy-preserving patient monitoring in healthcare IoT using attribute-based cryptography, Journal of Discrete Mathematical Sciences and Cryptography, 27:2-A, 513-524, DOI: 10.47974/JDMSC-1896

Sable, Nilesh P., Rathod, Vijay U., Parlewar, Pallavi, Rathod, Smita B., Waghmode, Santosh T. & Rathod, Rahul R. (2024) Efficient lightweight cryptography for resource-constrained WSN nodes, Journal of Discrete Mathematical Sciences and Cryptography, 27:2-A, 349-359, DOI: 10.47974/JDMSC-1888

Renuse, S., Mahalle, P. N., Shinde, G. R., & Sable, N. P. (2024). Enhancing IoT Security with Activity-Based Attack Modeling and Hybrid Classification Techniques. Panamerican Mathematical Journal, 34(1), 1-13.

Deshpande, M., Mehta, P., Sable, N., Baraskar, U., Ingole, I., Shinde, V. (2024). Mental Health Prediction Using Artificial Intelligence. In: Sharma, N., Goje, A.C., Chakrabarti, A., Bruckstein, A.M. (eds) Data Management, Analytics and Innovation. ICDMAI 2024. Lecture Notes in Networks and Systems, vol 998. Springer, Singapore. https://doi.org/10.1007/978-981-97-3245-6_4

Dhas, P. C., Mahalle, P. N., Shinde, G. R., & Sable, N. P. (2024). Analyzing the State-of-the-Art in Descriptive Statistics, Storytelling, and Performance Parameter Confirmation for IoT Applications. *Advances in Nonlinear Variational Inequalities*, 27(4), 161-184. <https://doi.org/10.52783/anvi.v27.1499>

Dabade, M. S., Shinde, G., Mahalle, P., Sable, N., & Kharate, N. (2024). Comparative Analysis of Semantic and Syntactic Approaches in

Automatic Text Summarization: A Comprehensive Review and Evaluation. *Panamerican Mathematical Journal*, 34(2), 183-194. <https://doi.org/10.52783/pmj.v34.i2.939>

Bhat, P. et al. (2024). Brain Tumor Detection Using CNN. In: Venu Gopal Rao, K., Krishna Prasad, A.V., Vijaya Bhaskar, S.C. (eds) Advances in Computational Intelligence. ICACI 2023. Communications in Computer and Information Science, vol 2164. Springer, Cham. https://doi.org/10.1007/978-3-031-70001-9_2

N. P. Sable, A. Yenkikar and P. Pandit, "Movie Recommendation System Using Cosine Similarity," 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), Pune, India, 2024, pp. 1-5, doi: 10.1109/I2CT61223.2024.10543873.

Shah, H., Borole, T., Dhagude, A., Sable, N.P. (2024). Harmonizing Nature: Bird Species Classification Through Machine Learning-Based Vocal Analysis. In: Senjuu, T., So-In, C., Joshi, A. (eds) Smart Trends in Computing and Communications. SmartCom 2024 2024. Lecture Notes in Networks and Systems, vol 947. Springer, Singapore. https://doi.org/10.1007/978-981-97-1326-4_40

V. Kunjir, P. Bhandekar, K. Rothe, R. Kaul and N. P. Sable, "DarkModeNotifier: Automatic Dark Mode Enabler for Smart Phones to Improve User Experience," 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Krishnankoil, Virudhunagar district, Tamil Nadu, India, 2024, pp. 1-6, doi: 10.1109/INCOS59338.2024.10527701.

M. Khan, T. Chavan, V. Jain, N. Sable and J. Bagrecha, "Multi-Modal Accessibility Enhancement for Diverse User Groups," 2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE), Bangalore, India, 2024, pp. 440-445, doi: 10.1109/ICWITE59797.2024.10502974.

Nilesh P. Sable, E. al. (2023). Navigating Nonlinear Analysis and Artificial Intelligence Frontiers for Revolutionary Technology Solutions. *Advances in Nonlinear Variational Inequalities*, 27(1), 18-33. <https://doi.org/10.52783/anvi.v27.297>

Joshi, A. , Bagate, R. , Hambir, Y. , Sapkal, A. , Sable, N. P. , & Lonare, M. . (2023). System for Detection of Specific Learning Disabilities Based on Assessment. International Journal of Intelligent Systems and Applications in Engineering, 12(9s), 362-368.

Sayali Renuse, Parikshit N. Mahalle, Gitanjali Rahul Shinde, and Nilesh P. Sable. 2024. A Comparative Study of Access Control Models for Ubiquitous Computing Systems. In Proceedings of the 5th International Conference on Information Management & Machine Intelligence (ICIMMI '23). Association for Computing Machinery, New York, NY, USA, Article 78, 1-6. <https://doi.org/10.1145/3647444.3647905>

Sable, N. P., Rathod, V. U., Salunke, M. D., Jadhav, H. B., Tambe, R. S., & Kothavle, S. R. (2023). Enhancing Routing Performance in Software-Defined Wireless Sensor Networks through Reinforcement Learning. *International Journal of Intelligent Systems and Applications in Engineering*, 11(10s), 73-83.

Sable, N. P. , Sonkamble, R. , Rathod, V. U. , Shirke, S. , Deshmukh, J. Y., & Chavan, G. T. . (2023). Web3 Chain Authentication and Authorization Security Standard (CAA). *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(5), 70-76. <https://doi.org/10.17762/ijritcc.v11i5.6526>

S. Khurana, P. Balakumar, N. P. Sable, S. K. Sinha, M. Pandey and V. M. Saravanan, "Analyzing the Use of Machine Learning Models for Enhancing Big Data Retrieval Performance," 2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS), Indore, India, 2023, pp. 48-52, doi: 10.1109/ICPSITIAGS59213.2023.10527534.

A. Kannagi, T. Agrawal, M. K. Singar, K. R. Singh, K. K. Senthilkumar and N. P. Sable, "From Theory to Practice: Analyzing the Feasibility of Augmenting Human Intelligence with AI Technologies," 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 2024, pp. 1-8, doi: 10.1109/ICCCNT61001.2024.10724873.

Y. K. Mali, V. U. Rathod, N. P. Sable, R. R. Rathod, N. A. Rathod and M. N. Rathod, "A Technique for Maintaining Attribute-based Privacy Implementing Blockchain and Machine Learning," 2023 Global Conference on Information Technologies and Communications (GCITC), Bangalore, India, 2023, pp. 1-4, doi: 10.1109/GCITC60406.2023.10426183.

P. Garg, R. K. Yadav, D. V. C, D. Nirmala, N. P. Sable and K. Murari, "Estimation Analysis of Edge and Line Detection Methods in Digital Image Processing," *2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON)*, Bangalore, India, 2023, pp. 1-6, doi: 10.1109/SMARTGENCON60755.2023.10442722

N. P. Sable, S. Singh, M. K. Sharma, N. Patil, A. Mishra and L. B, "Machines Thinking Fast: AI-Powered Automating of Information Capture and Retrieval," *2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON)*, Bangalore, India, 2023, pp. 1-6, doi: 10.1109/SMARTGENCON60755.2023.10441985