International Journal on Advanced Computer Theory and Engineering

ﬁ\ , Archives available at journals.mriindia.com

(l l International Journal on Advanced Computer Theory and Engineering
b ISSN: 2347-2820
- - Volume 12 Issue 01, 2023

Automated Code Generation using Machine Learning Techniques

Dr. Olivia Martinez!, Prof. Deepak SharmaZ
1Redwood Polytechnic Institute, olivia.martinez@redwoodpoly.tech
2Eastvale Engineering College, deepak.sharma@eastvale.edu

Peer Review Information Abstract
Submission: 25 Feb 2023 Automated code generation using machine learning techniques has
Revision: 18 April 2023 emerged as a transformative approach to software development,
Acceptance: 21 May 2023 enabling developers to generate high-quality code with minimal
manual effort. This paper explores recent advancements in machine
Keywords learning-driven code generation, focusing on deep learning models,

transformer-based architectures, and large language models
Automated Code Generation | (LLMs) such as GPT, CodeBERT, and Codex. Key methodologies

Machine Learning include natural language processing (NLP) for translating human-
Transformer Models readable descriptions into executable code, reinforcement learning
Natural Language for improving code efficiency, and fine-tuning techniques to
Processing enhance model adaptability. We discuss various applications,

including code completion, bug fixing, and optimization, while
addressing challenges such as code correctness, security
vulnerabilities, and domain-specific adaptations. Finally, we
highlight future directions, emphasizing the need for explainability,
improved dataset quality, and hybrid Al-human collaboration for
robust and efficient automated code generation.

INTRODUCTION

The rapid evolution of machine learning (ML) techniques has significantly influenced software
development, particularly in the domain of automated code generation. Traditional software
development requires extensive manual effort, expertise, and debugging, making it a time-consuming
and error-prone process. Automated code generation leverages ML models to assist developers in
writing, completing, and optimizing code, thereby improving productivity and reducing human
intervention.

Recent advancements in deep learning and natural language processing (NLP) have enabled the
development of sophisticated models capable of generating high-quality code from natural language
descriptions. Transformer-based architectures such as OpenAl’s Codex, CodeBERT, and AlphaCode
have demonstrated remarkable performance in generating syntactically and semantically correct

© 2024 The Authors. Published by MRI INDIA.

https://journals.mriindia.com/

Automated Code Generation using Machine Learning Techniques

code [1,2]. These models are trained on massive code repositories, learning patterns, syntax, and logic
to generate human-like code. Additionally, reinforcement learning techniques have been explored to
enhance the efficiency and correctness of generated code, ensuring better alignment with
programming best practices [3].

Applications of automated code generation span multiple domains, including code completion, bug
fixing, refactoring, and automated testing [4]. Large enterprises and open-source communities are
actively integrating ML-powered code generation tools into development workflows, reducing coding
effort and accelerating software delivery. Despite its potential, challenges remain in ensuring code
reliability, security, and domain-specific adaptability [5]. Addressing these challenges requires
continuous model improvements, high-quality training datasets, and effective human-Al
collaboration to bridge the gap between automated and expert-driven coding.

This paper explores recent developments in ML-based code generation, discussing key
methodologies, challenges, and future directions. By analyzing state-of-the-art techniques, we aim to
provide insights into how automated code generation can revolutionize software engineering and
contribute to more efficient and intelligent development processes.

Physical Model
(floating-point)

T

Compiler
(Linker) el
.»~ Host PC
o -
é._"r.:"_f%-_t.\. ’f’
P V5, 2
Code generator G Code P
g;:_ JEZ‘JUL f"l
»Qj:'\}'?g'tr)f = g L2
—————————————— [[— e e L LT L
R e —— - i i
O S,
L Target

Implementation Model
(fixed-point)

Cross-compiler
(Linker / Loader)

Fig.1: Principle of Automated Code Generator

LITERATURE REVIEW

Automated code generation has witnessed substantial advancements with the integration of machine
learning (ML) techniques. Researchers have explored various approaches, including deep learning,
transformer-based architectures, and reinforcement learning, to enhance the efficiency and accuracy
of code generation. This section discusses significant contributions to the field, categorized into key
methodologies.

1. Transformer-Based Code Generation

Transformer models, particularly those trained on large code repositories, have revolutionized
automated code generation. OpenAl’'s Codex[1] and DeepMind’s AlphaCode[2] are prime examples,
demonstrating exceptional performance in generating code from natural language descriptions.
These models leverage extensive pre-training on open-source code to understand syntax, logic, and
structure, enabling them to generate functionally correct code. CodeT5[6] and CodeBERT][7] extend
transformer-based techniques for code summarization, translation, and completion.

23

Automated Code Generation using Machine Learning Techniques

2. Deep Learning for Code Generation

Deep learning models, such as recurrent neural networks (RNNs) and convolutional neural networks
(CNNs), have been explored for code synthesis. Sequence-to-sequence (Seq2Seq) models [8] were
among the earliest approaches used to translate natural language descriptions into executable code.
However, these models struggled with long-range dependencies, leading to the adoption of attention-
based architectures. Hybrid approaches, such as combining CNNs with long short-term memory
(LSTM) networks, have also been investigated for learning code patterns effectively [9].

3. Reinforcement Learning for Code Optimization

Reinforcement learning (RL) has been increasingly applied to improve the correctness and efficiency
of generated code. RL-based models fine-tune code generation processes by incorporating execution-
based rewards and dynamic programming techniques[3]. OpenAl's ChatGPT Code Interpreter
integrates RL techniques to refine responses based on execution feedback, reducing syntax errors
and logical inconsistencies.

4. Program Synthesis and Code Completion

Program synthesis, which focuses on generating code snippets from high-level specifications, has
gained attention. Approaches like Sketch-based synthesis[10] and Neural Code Completion[4] use ML
models to suggest or complete partially written code. Tools such as GitHub Copilot (developed using
Codex) enhance developer productivity by suggesting relevant code snippets based on context.

Table 1: Overview of Literature Review

Year Key Contributions Datasets Used Article Advantages Disadvantages
Count

2020 Introduction of CodeSearchNet, ~20+ Improved Limited to specific
CodeBERT for code GitHub Repos NLP-to-code programming
understanding and conversion languages
generation (Feng et
al)

2021 OpenAl's Codex, OpenAl Codex ~30+ High-quality May generate
powering GitHub = Dataset, GitHub code incorrect or
Copilot, shows Code completion insecure code
superior code
generation

2022 AlphaCode by Codeforces, ~25+ Solves Struggles with real-
DeepMind LeetCode, GitHub complex world software
outperforms algorithmic development tasks
competitive problems
programmers

2023 Advances in Stack Overflow, ~35+ Generates Computationally
Reinforcement JavaCorpus, optimized and = expensive training
Learning for | Py150 bug-free code
optimizing
generated code

ARCHITECTURE

The architecture consists of two primary sections:

1. Core Architecture (Human-Swarm Interaction) -

instructions into commands for a robotic swarm.

24

Responsible for translating human

Automated Code Generation using Machine Learning Techniques

2. Automatic Code Generation - Facilitates the creation of structured code that defines
interaction logic and action stubs for swarm management.

1. Core Architecture (Human-Swarm Interaction)
This section focuses on how human commands are processed and translated into actionable swarm
commands.
a) Human Operator and Speech Processing
e The human operator interacts with the system using natural speech.
e IBM Cloud’s Watson Speech to Text service converts the spoken language into text format.
e This text is passed to Watson Conversation, an Al-powered NLP model that understands and
processes the intent of the command.
e The processed response is then sent to the Human-Swarm Interaction Controller, which plays
a crucial role in translating human instructions into system-understandable commands.
b) Human-Swarm Interaction Controller
e This component acts as the central decision-making unit in the system.
e It takes the conversation response from Watson Conversation and interprets it to generate
meaningful swarm-level commands.
e These commands are structured instructions designed to control the behavior of a robotic
swarm rather than individual robots.
c) Swarm Manager
e The Swarm Manager is responsible for breaking down swarm-level commands into individual
robot instructions.
e Itensures that each robot in the swarm receives specific commands tailored to its role within
the swarm formation.
e This mechanism enables coordinated and efficient swarm behavior, ensuring that robots
work together in achieving the desired objective.
d) Robot Swarm Execution
e Once individual robot commands are generated by the Swarm Manager, they are transmitted
to the robotic swarm.
e The robots execute the given instructions, ensuring that they follow the intended interaction
patterns set by the human operator.

2. Automatic Code Generation
This section focuses on generating structured code that automates the interaction between the
human operator and the robotic swarm.
a) Domain-Specific Language (DSL)
e The system employs a Domain-Specific Language (DSL) to define the rules and syntax
governing human-swarm interactions.
e DSL ensures that generated code adheres to a well-defined framework, making interactions
more structured and reliable.
b) Human-Swarm Interaction Specification
e This component ensures that all generated code aligns with the expected behavior of human-
swarm communication.
e It acts as a blueprint for defining the interaction logic and maintaining consistency in
communication patterns.
c) Code Generator
e The Code Generator is responsible for transforming interaction specifications into structured
machine-readable code.
e [tautomatically generates two key outputs:

25

Automated Code Generation using Machine Learning Techniques

1. Watson Conversation JSON Definition File: A structured file that defines the
conversational flow between the human operator and Watson’s Al model. It includes
intents, entities, and responses to manage interaction consistency.

2. Action Stubs: Predefined code templates that contain function placeholders for
controlling robot behavior. These stubs can be customized further to add additional
logic specific to the swarm’s requirements.

Core architecture Automatic code generation

[e e e e e e e " Domain-Specific Language
i i E ! |
| — Text —",1)]*'—‘I— Uploaded to P
— [.\'\' - i I Conforms to
!] !
IBM Cloud | Watson Speech to Text Watson Conversation | I .
i | Human-Swarm Interaction
—————————— s] Specification
Audio Response
+ | 1
@4— Conversation —————» Hum-ggﬁr&g@rﬂcﬁon | Code generator
Human I |
operator Swarm-level commands Generates Generates
oo ! | / N
O __ Individual robot ___| Watson Conversation "
Q Q commands Swarm Manager | JSON definition file Action stubs
Q0o l
00 L ,
Robot swarm - Implemented by
Fig.2: System Architecture
RESULT

Automated code generation using machine learning has demonstrated significant advancements in
various aspects, including code synthesis, bug detection, efficiency improvements, and human-AlI
collaboration.

Table 2: Performance Metrics and Benchmarking

Model Year Accuracy (Code Benchmark Notable Features
Completion / Dataset
Generation)
Codex (OpenAl) 2021 57.1% (HumanEval, OpenAl's Codex Powers GitHub
pass@1 metric) Dataset Copilot, advanced
multi-language
support
AlphaCode 2022 Solves ~34% of Codeforces Outperforms
(DeepMind) programming Competitive human coders in
challenges at Programming some cases

competitive level
CodeTS5 (Salesforce) 2021 BLEU score: 86+ for CodeSearchNet, Pretrained
code summarization | GitHub transformer for
code synthesis

26

Automated Code Generation using Machine Learning Techniques

PolyCoder (CMU) 2022 Predicts code with @ Open-source Supports multiple
72% accuracy on GitHub dataset programming
function completion languages
tasks

CodeGen 2023 Generates correct The Pile, BigCode Optimized for

(Google/DeepMind) Python code ~40% of Dataset Python-based
the time applications

90

80

70

60

50

Accuracy (%)

40

30

20

10

Codex AlphaCode CodeTs PolyCoder CodeGen
Models

Fig.3 Models Performance in Accuracy
Datasets Used:
CodeSearchNet (6M code functions from GitHub)
The Pile (open-source dataset with code samples)
CodeForces Dataset (used for training AlphaCode)
Google BigCode Dataset (10+ languages, including Java, Python, C++)

W

CONCLUSION

Automated code generation using machine learning techniques has significantly advanced software
development by improving efficiency, reducing human errors, and enabling faster prototyping.
Machine learning models, particularly deep learning approaches such as transformers and recurrent
neural networks (RNNs), have demonstrated strong capabilities in understanding programming
languages, generating syntactically and semantically correct code, and even optimizing performance.
Despite these advancements, challenges remain, including ensuring code correctness, security, and
maintainability. The interpretability of generated code and the ability of models to generalize across
different programming paradigms are active areas of research. Additionally, integrating machine
learning-based code generation with existing development workflows requires careful consideration
of developer needs and industry standards.

27

Automated Code Generation using Machine Learning Techniques

Future work should focus on improving the accuracy of generated code, enhancing model training
with diverse and high-quality datasets, and incorporating human feedback to refine output. As
machine learning continues to evolve, automated code generation is expected to become an integral
part of modern software engineering, complementing human expertise rather than replacing it.

REFERENCES

1.

2.

10.

11.

12.

13.

14.

Chen, M., Tworek, |, Jun, H,, et al. (2021). Evaluating Large Language Models Trained on
Code. arXiv preprint arXiv:2107.03374.

Li, J., Gu, S., Fang, H., et al. (2022). CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics.

Zhang, Y, Wang, X, & Liu,]. (2023). Reinforcement Learning for Automated Code
Generation and Optimization. IEEE Transactions on Software Engineering.

Guo, Q. He, J., & Sun, Y. (2022). Deep Learning for Code Completion and Automated
Debugging. ACM Computing Surveys.

Rahman, M., Ahmed, T, & Kumar, S. (2023). Security Challenges in ML-Based Code
Generation. Journal of Software Security and Reliability.

Wang, Y, Shin, R, & Paliwal, A. (2021). CodeT5: Identifier-aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation. arXiv preprint
arXiv:2109.00859.

Feng, Z., Guo, D., et al. (2020). CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. Proceedings of NeurIPS 2020.

Iyer, S., Koncel-Kedziorski, R., & Zettlemoyer, L. (2018). Mapping Language to Code in
Programmatic Context. arXiv preprint arXiv:1808.09588.

Hindle, A., Barr, E., Gabel, M., Su, Z., & Devanbu, P. (2016). On the Naturalness of Software.
Communications of the ACM, 59(5), 122-131.

Solar-Lezama, A. (2008). Program Synthesis by Sketching. PhD Thesis, MIT.

Xu, Y, Wang, P, & Zhang, C. (2022). Challenges in Domain-Specific Automated Code
Generation. IEEE Software, 39(3), 50-57.

Liu, H.,, Tang, W,, & Zhao, L. (2021). Generalization Issues in Al-Assisted Code Generation.
Proceedings of the 43rd ACM/IEEE International Conference on Software Engineering
(ICSE’21).

E. Dehaerne, B. Dey, S. Halder; S. De Gendt and W. Meert, "Code Generation Using Machine
Learning: A Systematic Review," in IEEE Access, vol. 10, pp. 82434-82455, 2022, doi:
10.1109/ACCESS.2022.3196347

Ahmed, A., Azab, S., Abdelhamid, Y. (2023). Source-Code Generation Using Deep Learning:
A Survey. In: Moniz, N, Vale, Z, Cascalho,]., Silva, C., Sebastido, R. (eds) Progress in
Artificial Intelligence. EPIA 2023. Lecture Notes in Computer Science(), vol 14116.
Springer, Cham. https://doi.org/10.1007/978-3-031-49011-8 37

28

https://doi.org/10.1007/978-3-031-49011-8_37

