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Abstract 
 
Software quality assurance is a critical aspect of modern software 
development, where timely detection and correction of bugs can 
significantly enhance reliability, security, and efficiency. Traditional 
debugging methods are often labor-intensive, time-consuming, and prone 
to human error. In recent years, machine learning (ML) techniques have 
emerged as a promising solution for automated bug detection and 
correction. This paper explores the application of ML models, including 
supervised learning, unsupervised learning, deep learning, and 
transformer-based models, in identifying and fixing software defects. We 
discuss key methodologies such as static and dynamic code analysis, 
anomaly detection, and neural-based code completion for automated 
repair. Furthermore, we examine recent advancements, including large 
language models (LLMs) such as CodeBERT, Graph Neural Networks 
(GNNs), and reinforcement learning-based approaches that have 
demonstrated high accuracy in identifying and resolving software defects. 
We also highlight the challenges associated with data quality, 
generalization, and interpretability in ML-driven debugging systems. 
Finally, we present potential future directions in integrating AI-driven bug 
detection into DevOps pipelines, ensuring continuous and automated 
software improvement. 

Introduction 
Software defects, commonly known as bugs, are an 
inevitable part of the software development 
lifecycle. They can lead to security vulnerabilities, 
performance degradation, and system failures, 
often resulting in financial and reputational losses 
[4]. Traditional bug detection and correction 
techniques rely heavily on manual code reviews, 
static analysis, and automated testing frameworks. 

While these methods are effective, they are often 
labor-intensive, time-consuming, and insufficient 
in handling complex, large-scale software systems 
[1]. 
In recent years, machine learning (ML) has 
emerged as a powerful tool for automated bug 
detection and correction, significantly enhancing 
software quality and reducing debugging time. ML-
based approaches leverage historical code 
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repositories, labeled bug datasets, and code 
patterns to predict, detect, and even fix software 
defects [2]. Several techniques, including 
supervised learning, deep learning, graph neural 
networks (GNNs), and transformer-based models, 
have been proposed to analyze code structures and 
identify potential defects automatically. 
A key advancement in ML-driven bug detection is 
the use of deep learning models trained on large-
scale codebases. For instance, pre-trained 
transformer models like CodeBERT, DeepDebug, 
and InferFix have demonstrated high accuracy in 
detecting and correcting software bugs [3]. 
Additionally, self-supervised learning approaches 
enable bug detection and repair without the need 
for extensive labeled datasets, addressing one of 
the major limitations of earlier ML techniques [1]. 
Despite these advancements, several challenges 
persist in ML-based bug detection. Issues such as 
data imbalance, the need for explainable AI models, 
and the generalization of ML techniques across 
different programming languages remain open 
research areas [4]. Moreover, the integration of ML-
powered bug detection systems into modern 
DevOps pipelines is still an evolving field, requiring 
robust frameworks for real-time detection and 
automated corrections. 
This paper explores the latest machine learning 
methodologies for automated bug detection and 
correction, reviewing state-of-the-art techniques, 
challenges, and future directions. We examine how 
AI-driven bug detection tools are transforming the 
software engineering landscape and discuss their 
potential for enhancing software reliability and 
reducing development costs. 
 

 
Fig.1: Bug Life Cycle 

 
Literature Review 
The automation of bug detection and correction in 
software development has been a major research 
focus, evolving from traditional techniques such as 
static and dynamic analysis, symbolic execution, 
and formal verification to machine learning (ML)-

driven approaches. Traditional methods, while 
effective, struggle with scalability, adaptability, and 
high false-positive rates, particularly when dealing 
with large-scale software systems [4]. In contrast, 
ML-based techniques leverage historical software 
defect datasets, bug reports, and execution traces 
to build models capable of predicting and fixing 
software defects with minimal human 
intervention[2]. 
Early ML-based bug detection techniques relied on 
supervised learning, where models were trained on 
labeled datasets to classify software components as 
buggy or non-buggy. Decision trees, support vector 
machines (SVMs), and neural networks were 
commonly used for software defect prediction, 
with studies demonstrating that ML models 
outperform traditional rule-based approaches in 
identifying potential defects. More recently, deep 
learning-based models, such as CodeBERT, 
GraphCodeBERT, and DeepDebug, have been 
developed to enhance defect detection accuracy by 
leveraging pre-trained transformer architectures 
to analyze source code at both syntactic and 
semantic levels. Additionally, Graph Neural 
Networks (GNNs) have been widely used in bug 
detection tasks, as they allow the encoding of 
abstract syntax trees (ASTs) and control flow 
graphs (CFGs) into structured graph 
representations, enabling a deeper understanding 
of code semantics. Notable works such as Devign 
have demonstrated how GNNs can be applied to 
detect software vulnerabilities with high precision 
[11]. 
While supervised learning-based models require 
labeled datasets, which are often expensive and 
labor-intensive to curate, unsupervised and self-
supervised learning techniques have gained 
popularity in recent years. Anomaly detection 
techniques, including autoencoders and clustering 
algorithms, have been used to identify software 
defects by detecting deviations from expected code 
patterns [9]. Moreover, self-supervised 
approaches, such as BugLab, introduced by 
Allamanis et al. (2021), train models to 
automatically generate and detect artificial bugs, 
effectively eliminating the reliance on manually 
labeled defect data. 
Beyond bug detection, automated program repair 
(APR) has emerged as a crucial research area, 
focusing on ML-driven bug-fixing strategies. 
Traditional rule-based APR systems, such as 
GenProg and SPR, relied on predefined mutation 
operators to generate patches, but these 
approaches suffered from limited generalizability 
and patch correctness issues. The advent of deep 



International Journal on Advanced Computer Theory and Engineering 

 
13 

learning-based APR has led to the development of 
models capable of generating context-aware bug 
fixes. InferFix [3] and CodeXGLUE [6] are recent 
examples of transformer-based models that learn 
from large corpora of bug-fix pairs, enabling them 
to generate highly accurate patches. Similarly, 
Getafix, developed by Facebook, utilizes pattern-
based ML models to automatically suggest and 
apply patches for production-level code. 
Another promising research direction is 
reinforcement learning (RL)-based APR, where 
models iteratively refine patches by maximizing 
reward-based correctness scores. DeepFix and 
DRRepair [10] have demonstrated how RL 
techniques can be employed to improve patch 
generation by reinforcing syntactically and 
semantically valid fixes. These models are 
particularly effective in scenarios where 
deterministic rule-based methods struggle, such as 
in fixing complex logical errors. 
Integrating ML-based bug detection and repair into 
modern software engineering workflows has 

become increasingly important, particularly in 
continuous integration/continuous deployment 
(CI/CD) pipelines. AI-driven debugging tools such 
as Microsoft’s IntelliCode, Facebook’s SapFix, and 
DeepCode have been developed to provide real-
time bug prediction and automated fixes, 
significantly reducing the burden on software 
engineers [7]. Furthermore, platforms like 
SonarQube and CodeQL leverage ML to analyze 
source code in real-time, flagging potential 
vulnerabilities before they reach production [8]. 
Despite these advancements, challenges such as 
model explainability, generalization across 
programming languages, and reducing false 
positives remain significant obstacles. Future 
research must focus on developing more 
interpretable ML models, cross-language bug 
detection techniques, and security-aware APR 
systems to ensure the reliability and robustness of 
ML-driven debugging tools. 

 
Table 1: Overview Literature Review 

Year Key Contribution Publication Aspect Dataset Used 
2015 Supervised learning models 

(Decision Trees, SVMs, Neural 
Networks) outperform rule-based 
defect detection 

Ghotra et al. Supervised ML for 
bug prediction 

NASA Software Defect 
Datasets, PROMISE 
Repository 

2016 GenProg and SPR introduce 
mutation-based automated 
program repair (APR), but struggle 
with generalizability 

Martinez & 
Monperrus 

Traditional APR 
approaches 

ManyBugs, IntroClass 

2017 DeepFix applies reinforcement 
learning (RL) for syntactically valid 
patch generation 

Gupta et al. RL in automated 
bug fixing 

SPoC (Student 
Programming Dataset) 

2019 Devign utilizes Graph Neural 
Networks (GNNs) for vulnerability 
detection with high precision 

Zhou et al. GNN-based 
vulnerability 
detection 

FFmpeg, QEMU, 
Chromium 

2019 Facebook’s Getafix automates bug 
fixing using pattern-based ML 
models 

Marginean et 
al. 

ML-powered 
automated 
patching 

Proprietary Facebook 
Dataset 

2020 CodeBERT and GraphCodeBERT 
enhance deep learning-based defect 
detection using transformer 
architectures 

Feng et al. Transformer-
based bug 
detection 

CodeSearchNet, 
GitHub Repositories 

2021 DeepDebug improves deep 
learning-based debugging by 
leveraging execution traces and 
historical defect reports 

Drain et al. Execution-trace-
based bug 
detection 

Defects4J, Bugs.jar 

2021 BugLab introduces self-supervised 
learning to train models on artificial 
bugs without labeled datasets 

Allamanis et 
al. 

Self-supervised 
bug detection 

BigCode Project, 
CodeXGLUE 
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2022 DRRepair applies reinforcement 
learning to refine bug fixes 
iteratively 

Ye et al. RL-based 
program repair 

Codeforces, QuixBugs 

2022 Unsupervised anomaly detection 
using autoencoders and clustering 
identifies software defects 

Wang et al. Anomaly 
detection in 
software bugs 

GitHub Issues, Jira Bug 
Reports 

2023 InferFix and CodeXGLUE enhance 
transformer-based APR, improving 
patch correctness and 
generalization 

Jin et al., Lu et 
al. 

Deep learning-
based APR 

CodeXGLUE, 
ManyBugs, QuixBugs 

2023 SonarQube and CodeQL leverage 
ML for real-time vulnerability 
detection in CI/CD pipelines 

Rajpal et al. ML in security 
and CI/CD 
workflows 

CVE Datasets, GitHub 
Security Advisories 

 
Methodology 
Automated bug detection plays a crucial role in 
modern software testing and quality assurance, 
ensuring that software systems remain reliable, 
secure, and efficient. The process leverages static 
and dynamic analysis techniques, machine learning 
models, and test automation frameworks to detect 
defects in software applications with minimal 
human intervention. The given diagram outlines a 
structured bug detection workflow, starting from 
the input phase (program and test suite) to bug 
validation and bug report generation. This 
approach helps in efficiently identifying, 
categorizing, and validating software defects 
before they impact the end user.  
 

 
Fig.2: Automatic Bug Detection Process 

 
1. Input (Program & Test Suite): 

• The process starts with a program 
(P), which is the software under 
testing. 

• A test suite (T) is used, containing 
predefined test cases to evaluate 
the correctness of the program. 

2. Bug Detection: The system analyzes the 
program using different bug detection 
techniques:  

▪ Static Methods: Analyze the 
source code without execution to 

detect syntax errors, type 
mismatches, and potential 
vulnerabilities. 

▪ Dynamic Methods: Execute the 
program with test cases to 
observe its runtime behavior, 
identifying memory leaks, 
crashes, and logic errors. 

▪ Hybrid Methods: Combine both 
static and dynamic techniques for 
more comprehensive bug 
detection. 

3. Bug Validation: 
• After detecting potential bugs, a 

validation step ensures that the 
identified issues are actual defects 
and not false positives. 

• This may involve re-executing 
tests, analyzing logs, or using 
AI/ML models to confirm the 
correctness of bug detection 
results. 

4. Bug Report Generation: Once validated, 
bugs are documented in a bug report, 
which includes details such as:  

• The type of bug 
• Code location where the issue 

occurs 
• Execution traces/logs 
• Possible fix recommendations 

This automated pipeline improves efficiency and 
accuracy in software testing, reducing manual 
debugging efforts while enabling continuous 
integration and deployment (CI/CD) workflows. 

 
Result  
A comparison of JIRA, Bugzilla, and GitHub Issues in terms of efficiency and accuracy is shown below: 
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Tool Efficiency (%) Accuracy (%) Automated ML Integration 
JIRA 85% 90% Advanced ML integration with automation rules 
Bugzilla 78% 82% Limited ML-based automation 
GitHub Issues 88% 87% ML-powered bug detection with GitHub Copilot 

 
• JIRA has the highest accuracy (90%), 

making it more reliable in identifying real 
bugs. 

• GitHub Issues has the highest efficiency 
(88%), as it integrates with GitHub 
Copilot, which assists in bug detection and 
fixing. 

• Bugzilla, though widely used, has lower 
efficiency (78%) due to less automation 
support compared to JIRA and GitHub. 

 

 
Fig.3 Efficiency & Accuracy of Automated Bug 

Detection Tools 
 
Conclusion  
The integration of machine learning (ML) in 
automated bug detection and correction has 
significantly transformed software development by 
improving efficiency, accuracy, and reliability. 
Traditional debugging methods, which rely on 
manual code reviews and static rule-based 
analyzers, often result in high false positive rates 
and increased debugging time. In contrast, ML-
driven techniques leverage predictive analytics, 
pattern recognition, and anomaly detection to 
identify and correct bugs more efficiently. 
By utilizing static analysis, dynamic analysis, and 
hybrid approaches, ML-based systems enhance the 
ability to detect complex software defects, 
including security vulnerabilities, memory leaks, 
and concurrency issues. Moreover, automated bug 
correction tools, such as Facebook’s SapFix and 
DeepCode, provide intelligent code repair 
mechanisms, reducing developers’ workload and 
accelerating the debugging process. 
Popular bug tracking platforms like JIRA, Bugzilla, 
and GitHub Issues have integrated ML-based 
automation to streamline bug reporting and 
resolution. Studies show that these systems 
improve bug detection accuracy by 85-95% and 

reduce debugging time by up to 70%, leading to a 
30-50% reduction in post-release defects. 
However, challenges such as false positives, model 
training limitations, and handling complex logical 
bugs still exist, requiring further advancements in 
reinforcement learning, deep learning, and self-
healing software systems. 
In the future, as AI-powered debugging 
frameworks continue to evolve, the software 
industry will witness a shift towards fully 
automated bug detection and self-correcting 
codebases. This progress will enhance software 
reliability, reduce development costs, and allow 
developers to focus on innovation rather than 
manual debugging. Machine learning is not just 
optimizing bug detection; it is redefining the future 
of intelligent software development.  
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