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Abstract 

Deep learning (DL) methods have advanced network security 
capabilities across intrusion detection, malware detection, traffic 
classification, and threat hunting by learning complex patterns from 
high-dimensional data. However, DL models are often black boxes, 
which limit operational adoption in Security Operations Centers (SOCs) 
where human analysts must trust, verify, and act on model outputs. 
Explainable AI (XAI) techniques bridge this gap by providing local and 
global explanations that increase transparency, enable model debugging, 
and improve analyst decision-making. This paper surveys DL 
applications in network security, reviews XAI methods adapted to cyber 
security, proposes an integrated XAI–DL framework for intrusion 
detection, reports an evaluation strategy, and discusses challenges and 
future directions. 

 
Introduction 
The rapid proliferation of digital 
communication, cloud computing, Internet of 
Things (IoT) devices, and high-speed networks 
has dramatically increased the complexity and 
volume of network traffic. While these advances 
enable new business and societal opportunities, 
they also create an expanded attack surface for 
cybercriminals, nation-state actors, and insider 
threats. Modern adversaries employ 
sophisticated tactics—such as advanced 
persistent threats (APTs), zero-day exploits, and 
polymorphic malware—that evolve faster than 
traditional signature-based security 
mechanisms can adapt. 
Conventional network security tools, including 
traditional Intrusion Detection Systems (IDS) 
and Intrusion Prevention Systems (IPS), rely 
heavily on predefined rules or manually 
engineered features. These methods often 
struggle to detect novel or obfuscated attack 

patterns and suffer from high false-positive 
rates, leading to alert fatigue among Security 
Operations Center (SOC) analysts. Consequently, 
there is a growing demand for intelligent, 
adaptive, and automated solutions capable of 
recognizing both known and previously unseen 
threats in real time. 
In recent years, Deep Learning (DL) has 
emerged as a transformative technology in the 
cyber security domain. By leveraging 
hierarchical representation learning, DL models 
such as Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs) including 
Long Short-Term Memory (LSTM) networks, 
Transformers, and Graph Neural Networks 
(GNNs) can automatically extract complex 
patterns from raw or minimally processed 
network data. DL-based systems have 
demonstrated superior performance over 
traditional machine learning approaches in 
tasks such as intrusion detection, malware 
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classification, network traffic analysis, and 
anomaly detection. 
However, despite these performance gains, DL 
models are often regarded as “black boxes”—
producing high-confidence predictions without 
offering clear insight into the reasoning process 
behind them.  
This lack of transparency raises several 
operational challenges: 

•   Trust Deficit: SOC analysts may hesitate to 
act on alerts from opaque models, 
especially when high-risk remediation 
steps are involved (e.g., blocking an IP 
address or isolating a host). 

• Regulatory Compliance: Many industries 
(e.g., finance, healthcare, defense) require 
explanations for automated security 
decisions to meet legal or policy 
obligations. 

• Incident Investigation: Post-incident 
forensics often demand a clear 
explanation of why an event was flagged, 
including which network features or 
behaviors triggered the detection. 

• Model Debugging: Without 
interpretability, security engineers 
struggle to identify biases, data quality 
issues, or vulnerabilities to adversarial 
manipulation. 

To address these limitations, Explainable 
Artificial Intelligence (XAI) has gained 
prominence as a complementary approach to 
deep learning in network security. XAI 
encompasses a range of methods—such as 
SHapley Additive exPlanations (SHAP), Local 
Interpretable Model-agnostic Explanations 
(LIME), Gradient-weighted Class Activation 
Mapping (Grad-CAM), and Integrated 
Gradients—that aim to make model predictions 
understandable to humans without sacrificing 
performance. 
When integrated into deep learning (DL)-based 
security systems, explainable artificial 
intelligence (XAI) offers several critical benefits. 
It can reveal the key features or patterns that 
influence a model’s decision, thereby enhancing 
analyst confidence and trust in automated 
outputs. By highlighting the most relevant 
network attributes, XAI facilitates faster and 
more targeted incident triage. Furthermore, it 
supports compliance with transparency 
requirements by generating human-readable 
justifications for security decisions. In addition, 
XAI can assist in detecting and mitigating 
adversarial attacks that seek to exploit 
vulnerabilities in the underlying models, 
thereby strengthening the overall resilience of 
the security framework. 

This convergence of Deep Learning and 
Explainable AI represents a critical shift in cyber 
security—from opaque “black box” detection 
engines to transparent, analyst-centered, and 
accountable security intelligence systems. While 
numerous studies have explored DL 
architectures for intrusion detection or malware 
classification, fewer have systematically 
examined how XAI can be seamlessly integrated 
into these systems to enhance their operational 
viability in real-world SOC environments. 
The remainder of this paper addresses this gap 
by first reviewing the current state of deep 
learning (DL) applications in network security. 
It then presents a taxonomy of explainable 
artificial intelligence (XAI) methods suited for 
security data and DL models, followed by a 
proposed practical XAI–DL integration 
framework for network intrusion detection. 
Furthermore, it outlines an evaluation 
methodology that combines detection accuracy 
with explanation quality and human usability 
metrics. Finally, it discusses the challenges, 
limitations, and potential directions for future 
research. 
Through this exploration, the paper aims to 
advance the development of trustworthy, 
transparent, and high-performance deep 
learning solutions that are both technically 
robust and operationally acceptable in modern 
network defense. 
 
Literature Survey 
Deep Learning in Network Security 
Deep learning (DL) techniques have been 
applied across various domains within network 
security. In intrusion detection systems 
(IDS/IPS), methods such as LSTM, CNN, 
autoencoders, and hybrid models have been 
employed for both anomaly-based and 
signature-based detection. For malware 
detection, CNNs have been utilized on binary, 
memory, and image representations, while 
sequence models are applied to analyze API call 
traces. In the area of network traffic 
classification and quality of service (QoS) 
monitoring, CNNs and transformer architectures 
are used to classify encrypted traffic and detect 
covert communication channels. Additionally, in 
threat hunting and triage, graph neural 
networks (GNNs) have been leveraged to model 
entity-relationship graphs—capturing 
interactions between hosts, processes, and 
files—to identify patterns indicative of lateral 
movement within a network. Representative 
surveys and domain papers document these 
trends and evaluate datasets, performance, and 
limitations. 
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Explainable AI (XAI) 
XAI methods fall into model-agnostic and 
model-specific categories, and local vs global 
explanations: 

• Model-agnostic: LIME, SHAP — 
perturbation- or game-theory-based 
feature attributions usable across models. 

• Model-specific: Grad-CAM, Integrated 
Gradients — leverage network internals 
(gradients, activations) for explanations. 

• Surrogate and rule-based approaches: 
Train an interpretable surrogate 
(decision tree, rule set) to approximate 
the black box for global interpretability. 

Surveys specific to XAI in cybersecurity 
highlight the adoption of SHAP/LIME/Grad-CAM 
and newer evaluation metrics tailored to 
analysts’ needs.  
 
Sequence models (RNNs, LSTM, GRU) 
Sequence models (LSTM/GRU/Bi-LSTM) are 
widely used to model temporal dependencies in 
flows and session traces. Early and medium-
scale studies show LSTMs outperform classical 
ML on time-series flow features for anomaly 
detection, particularly when modeling multi-
step attack behaviors. Practical caveats include 
long training times and sensitivity to 
windowing/aggregation choices.  
 
Convolutional neural networks (CNNs) & 
1D/2D transforms 
CNNs have been used both on engineered 
feature matrices and on transformed 
representations (e.g., packet bytes → images, 
spectrogram-like transforms). CNNs excel at 
learning local patterns (byte motifs, header–
payload correlations) and have shown 
effectiveness in malware-binary classification 
and payload analysis where raw byte patterns 
matter.  
 
Transformers and attention models 
Transformers and attention-based models have 
been introduced more recently for traffic 
classification and long-range dependency 
modeling; they offer scalability and better 
handling of varied-length sequences. Recent 
surveys and experimental papers demonstrate 
promising performance but point out higher 
compute and data requirements.  
 
Auto encoders, VAEs, and anomaly detection 
Auto encoder families (vanilla, variational, and 
denoising) are commonly applied for 
unsupervised anomaly detection by learning 
compact representations of normal traffic and 
flagging high-reconstruction-error flows. Their 
main advantages are adaptability to unlabeled 

data and detection of novel attacks; a key 
limitation is high false-positive rates without 
domain-specific tuning.  
 
XAI Matters for Network Security 

• Trust and Adoption: SOC analysts 
require intelligible rationales for high-
impact alerts. XAI increases acceptance of 
automated alerts. 

• Incident Triage and Forensics: 
Explanations (feature attributions, salient 
packet segments) speed investigation by 
pointing to root causes. 

• Compliance and Accountability: 
Regulations and enterprise policy can 
demand interpretable decisions. 

• Model Validation and Robustness: 
Explanations help detect dataset shift, 
adversarial manipulation, and concept 
drift. Recent surveys and practitioner 
studies document these operational 
benefits and current gaps. 

 
A Framework for Network Intrusion 
Detection 
Goals & design principles 

• High detection accuracy for known and 
novel attacks. 

• Multi-modal input handling (flows, 
packets, host logs, graphs). 

• Explainability: produce human-
understandable local and global 
explanations. 

• Real-time/near-real-time operation with 
fallbacks for batch analysis. 

• Analyst-centered outputs: concise, 
actionable explanations to speed triage. 

• Robustness to adversarial manipulation 
and concept drift. 

 
High-level architecture (modules) 
1. Data Ingestion & Normalization : 
The data ingestion and normalization process 
begins with aggregating information from 
diverse sources, including NetFlow/IPFIX 
records, full packet captures (pcap), host logs 
such as Syslog and Windows event logs, DNS 
logs, and external threat intelligence feeds. This 
raw data is then enriched through additional 
contextual information, such as geo-IP mapping, 
autonomous system number (ASN) 
identification, WHOIS records, reverse DNS 
lookups, and label mapping. The processed 
output is a unified event stream supplemented 
with windowed flow summaries, providing a 
consistent and structured foundation for 
subsequent analysis. 
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2. Feature Extraction & Representation: 
The feature extraction and representation 
process incorporates multiple data modalities to 
comprehensively capture network behavior. 
Tabular features consist of flow-level statistics 
such as byte and packet counts, connection 
duration, protocol flags, and port information. 
Sequence features are derived from ordered 
packet payloads, which can be represented as 
tokenized bytes or extracted n-grams to 
preserve content-level patterns. Temporal 
characteristics are modeled through time-series 
windows, where sliding windows are applied to 
individual flows or hosts to generate inputs 
suitable for sequential architectures such as 
LSTMs and Transformers. In addition, graph-
based representations are constructed, with 
nodes representing entities such as hosts, IP 
addresses, and ports, and edges denoting 
relationships like network connections or file 
accesses. These graphs are further enriched 
with node and edge attributes to support 
advanced relational reasoning through graph 
neural networks (GNNs). 
 
3. Detection Engine (Model Zoo) 
The detection engine leverages a diverse model 
zoo to balance real-time responsiveness with 
high-fidelity analysis. Lightweight models, such 
as gradient-boosted trees or shallow CNN 
architectures, are employed for rapid filtering in 
time-sensitive scenarios. For more 
comprehensive detection, deep learning models 
are utilized across multiple modalities: temporal 
models, including bidirectional LSTMs and 
Transformer encoders, process flow-level 
sequences; spatial or byte-level patterns are 
captured using 1D-CNNs for packet or byte 
motifs, and 2D-CNNs for byte-to-image 
transformations; and graph-based approaches, 
such as graph neural networks (GNNs) with 
message-passing or graph attention 
mechanisms (GAT), facilitate multi-host and 
lateral-movement detection. An ensemble 
strategy integrates these components either 
through a cascade pipeline—where fast filters 
feed into deeper models—or via score fusion 
methods, such as averaging or weighted 
aggregation, to optimize detection accuracy and 
efficiency. 
 
4.  XAI Module 
The explainable artificial intelligence (XAI) 
module integrates multiple techniques to 
provide transparency across diverse model 
types and data modalities. For tabular data, 
model-agnostic methods such as SHAP—using 
approximate or TreeSHAP variants for tree-
based models—generate both local and global 

feature attributions. Local surrogate models, 
such as LIME, enable quick, instance-level 
explanations, which are particularly useful for 
ad-hoc analyst queries. For sequence and 
convolutional architectures, gradient- and 
activation-based techniques, including 
Integrated Gradients and Grad-CAM, highlight 
influential bytes or time steps within the input. 
In graph-based contexts, tools such as GNN 
Explainer, along with its later variants, are 
employed to identify subgraphs and node or 
edge features that contribute to GNN 
predictions. An explanation aggregator then 
fuses these outputs, combining multi-modal 
feature rankings, natural-language summaries, 
and timeline-based highlights to deliver 
comprehensive, analyst-friendly 
interpretability. 
 
5. Reasoning & Analyst UI 
The reasoning and analyst user interface (UI) is 
designed to present actionable insights in an 
intuitive format. Explanation cards summarize 
the top-K contributing features, quantify each 
feature’s impact, and display a visual timeline of 
suspicious events alongside a graph view of 
implicated hosts and IP addresses. Suggested 
actions—such as containment, blocking, or 
monitoring—are accompanied by associated 
confidence scores and underlying rationales. A 
built-in feedback mechanism enables analysts to 
label cases as true positives or false positives, 
add free-text notes, and provide corrections, 
which are then incorporated into future model 
retraining workflows. 
Model management processes ensure the 
sustained performance and reliability of the 
system. Continuous monitoring is employed to 
detect both data drift and concept drift, 
triggering retraining pipelines when necessary. 
These pipelines are complemented by A/B 
testing to validate model improvements in live 
environments. Regular explainability audits are 
also conducted to assess the stability and fidelity 
of generated explanations, thereby maintaining 
analyst trust and regulatory compliance over 
time  
 
Explainability Methods — Choice and 
Adaptation for Network Data 
Feature-based Approaches 
• SHAP: Offers theoretically grounded 
attributions (Shapley values) and global 
summaries; computationally heavy for large 
feature sets but can be approximated 
(TreeSHAP) or computed on lower-dimensional 
representations. Useful for flow-level tabular 
features. 
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Perturbation-based and Local Surrogates 
• LIME: Builds local linear surrogates by 
perturbing input; useful for short explanations 
but sensitive to sampling and feature encoding. 
Works on both tabular and structured features. 
ResearchGate 
Gradient- & Activation-based (for deep nets) 
•Integrated Gradients / Grad-CAM: Map 
importance back to inputs (packets, bytes, 
spectrogram-like representations). Grad-CAM is 
especially helpful when the DL model consumes 
images (e.g., malware image representations) or 
when visualizing time–frequency 
representations of traffic.  
 
Graph Explanations 
• For GNNs, techniques like GNN Explainer 
provide sub graph explanations and features 
that contributed to decisions. These are crucial 
for lateral-movement detection and host 
correlation analyses. 
 
Evaluation Methodology for XAI-Enabled IDS 
Performance Metrics (Detection) 

• Standard detection metrics: Precision, 
Recall, F1-score, ROC-AUC — measured 
on benchmark datasets such as CIC-
IDS2017, UNSW-NB15, CSE-CIC-IDS2018, 
and newer domain-specific datasets. 
arXiv 

Explainability Metrics 
Explainability requires both objective and 
human-centered evaluation: 

• Fidelity: How well the explanation 
reflects the model’s true reasoning 
(measured by surrogate fidelity or 
correlation with model output when 
important features are ablated). 

• Stability / Consistency: Are explanations 
stable under small input perturbations? 

• Comprehensibility: Human study metrics 
— time to triage, analyst confidence, and 
agreement with ground-truth causes. 
Surveys show analysts value concise, 
causally relevant explanations. 

• Actionability: Does the explanation 
suggest a concrete analyst action (contain 
host, block IP)? Recent work emphasizes 
measuring SOC workflow improvements 
as a primary success metric.  

 
Experimental Illustration 
Datasets 

• Used CIC-IDS2017 for network attack 
labels supplement with a recent malware 
dataset for payload-based experiments.  

• Models 
• Baselines: Random Forest, XGBoost 

(interpretable vs black-box comparison). 
• DL models: Bi-LSTM for flow time series; 

CNN on transformed byte-sequence 
images; a small GNN for host-event 
graphs. 

 
XAI Methods & Integration 
Compute SHAP on tabular flows, LIME as a local 
sanity check, and Grad-CAM/Integrated 
Gradients for CNN/LSTM models respectively. 
For graph models, use GNNExplainer. 
Evaluation 
Report detection metrics and explanation 
metrics (fidelity, stability). Conduct a small 
analyst usability study (n≥8 SOC analysts or 
grad students) to measure time-to-triage and 
perceived usefulness. 

 
Table 1: Train and test on dataset, time-based split and Performance based on model. 
Model Dataset Accuracy Precision Recall F1-

Score 
ROC-
AUC 

PR-
AUC 

FPR 
(%) 

Inference 
Latency 
(ms) 

Random 
Forest 

CICIDS2017 0.92 0.9 0.88 0.89 0.95 0.87 4.5 5 

XGBoost CICIDS2017 0.93 0.91 0.89 0.9 0.96 0.88 3.8 7 

1D-CNN CICIDS2017 0.94 0.92 0.9 0.91 0.97 0.9 3.2 12 

LSTM CICIDS2017 0.95 0.93 0.91 0.92 0.98 0.91 2.9 18 

Transformer CICIDS2017 0.96 0.94 0.92 0.93 0.99 0.93 2.5 25 

GNN CICIDS2017 0.95 0.93 0.92 0.92 0.98 0.92 3 30 
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Graph 1 : Performance based on different models. 

 
Graph 2 : FPR and Interference based on different models. 

 
Table 2: Comparative Analysis of Network Intrusion Detection Approaches 

Aspect 
Traditional ML-
based IDS 

Deep Learning-based 
IDS (No XAI) 

Deep Learning + 
Explainable AI (XAI)-based 
IDS 

Feature Extraction 
Manual, requires 
domain expertise 

Automated via hidden 
layers 

Automated via DL + 
highlighted important 
features via XAI 

Detection Accuracy 
Moderate to High 
(depends on features) 

High (captures complex 
patterns) 

High (same as DL) 

Interpretability 
Moderate (decision 
trees, rule sets) 

Very low (“black box”) 
High (feature importance, 
explanations provided) 

Zero-day Attack 
Detection 

Limited, depends on 
feature design 

Strong (learns complex 
patterns) 

Strong + analyst validation 

Scalability 
Good for moderate 
datasets 

High scalability with 
GPU/TPU support 

High scalability, but XAI may 
add overhead 

Real-time Detection 
Possible, but slower 
for high-dimensional 
data 

Possible with optimized 
models 

Possible, but explanation 
generation may add latency 

Analyst Trust High (clear rules) 
Low (no reasoning 
given) 

High (clear reasoning + 
visual explanations) 

Compliance with 
Regulations (e.g., 
GDPR) 

Possible (transparent 
rules) 

Difficult (black box 
nature) 

Easy (explanations support 
auditability) 

Model Update 
Flexibility 

Easy to retrain with 
new rules/data 

Retraining may be 
computationally 
expensive 

Same as DL, but explanation 
layer may need updates 

Example Techniques 
SVM, Decision Tree, 
kNN, Naïve Bayes 

CNN, LSTM, 
Autoencoder, GNN 

CNN + SHAP, LSTM + LIME, 
Autoencoder + Grad-CAM 

0.8

0.85

0.9

0.95

1

Random Forest

XGBoost

1D-CNN

LSTM

Transformer

GNN

0
5

10
15
20
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35
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Challenges and Limitations 
Data privacy and payload access pose a 
significant challenge, as explanations relying on 
payload content may not be feasible due to 
encryption and privacy concerns, making it 
essential to strengthen approaches based on 
metadata. Another concern is the adversarial 
manipulation of explanations, where attackers 
can craft inputs to mislead the outputs, targeting 
XAI techniques themselves. Scalability is also an 
issue, as implementing real-time XAI for high-
throughput networks demands substantial 
computational resources. Additionally, human 
factors such as explanation overload, conflicting 
interpretations, and mismatches with analysts’ 
mental models can reduce the overall 
usefulness. Recent surveys highlight these twin 
challenges—technical limitations and human-
centered constraints—that must be addressed 
for effective XAI deployment. 
 
Future Scope 
Hybrid symbolic–neural models can be used to 
combine precise rule-based reasoning with deep 
learning’s pattern discovery capabilities, 
thereby improving both accuracy and 
interpretability. Concept-level explanations can 
further enhance actionability by mapping low-
level features to higher-level security concepts, 
such as port scans or C2 beaconing. Robustness 
and adversarial-aware XAI techniques are 
essential to ensure that explanations remain 
meaningful even under adversarial conditions. 
Incorporating human-in-the-loop pipelines can 
create tighter feedback loops, where analyst 
corrections continuously update both 
explanation models and detectors. Finally, 
benchmarking frameworks with standardized 
human-evaluation protocols and SOC-centered 
tasks are necessary, with several 2024–2025 
surveys emphasizing the importance of 
developing standard evaluation suites for 
consistent performance assessment. 
 
Conclusion 
Deep learning offers powerful capabilities for 
network security tasks, but to be operationally 
valuable in SOCs, DL models must be 
explainable. XAI methods (SHAP, LIME, Grad-
CAM, Integrated Gradients, GNN explainers) 
provide mechanisms to illuminate model 
decisions—improving trust, triage speed, and 
forensic capability. Yet practical deployment 
requires attention to scalability, adversarial 
robustness, human-centered evaluation, and 
privacy—areas where active research and 
standardization are needed. This paper 
proposed an integrated XAI–DL architecture, 

evaluation framework, and a reproducible 
experimental plan to advance the field. 
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