International Journal on Advanced Computer Engineering and Communication Technology

71
N ¥

Archives available at journals.mriindia.com

International Journal on Advanced Computer Engineering and

Communication Technology

ISSN: 2278-5140
Volume 14 Issue 02, 2025

The Role of Deep Learning in Network Security using Explainable

Artificial Intelligence

Dr. R.D.Bhoyar

Assistant Professor

Department of Computer Science,
Sant Gadge Baba Amravati Universit, Amravati.
Email: rajeshbhoyar@sgbau.ac.in

Peer Review Information

Submission: 05 Aug 2025
Revision: 15 Aug 2025
Acceptance: 05 Sept 2025

Keywords

Deep  learning, Network
Security, intrusion detection
systems, SHAP, LIME, Grad-
CAM, XAI-IDS

Abstract

Deep learning (DL) methods have advanced network security
capabilities across intrusion detection, malware detection, traffic
classification, and threat hunting by learning complex patterns from
high-dimensional data. However, DL models are often black boxes,
which limit operational adoption in Security Operations Centers (SOCs)
where human analysts must trust, verify, and act on model outputs.
Explainable AI (XAI) techniques bridge this gap by providing local and
global explanations that increase transparency, enable model debugging,
and improve analyst decision-making. This paper surveys DL
applications in network security, reviews XAl methods adapted to cyber
security, proposes an integrated XAI-DL framework for intrusion
detection, reports an evaluation strategy, and discusses challenges and
future directions.

Introduction
The rapid proliferation

patterns and suffer from high false-positive

of digital rates, leading to alert fatigue among Security

communication, cloud computing, Internet of
Things (IoT) devices, and high-speed networks
has dramatically increased the complexity and
volume of network traffic. While these advances
enable new business and societal opportunities,
they also create an expanded attack surface for
cybercriminals, nation-state actors, and insider
threats. Modern adversaries employ
sophisticated tactics—such as advanced
persistent threats (APTs), zero-day exploits, and
polymorphic malware—that evolve faster than
traditional signature-based security
mechanisms can adapt.

Conventional network security tools, including
traditional Intrusion Detection Systems (IDS)
and Intrusion Prevention Systems (IPS), rely
heavily on predefined rules or manually
engineered features. These methods often
struggle to detect novel or obfuscated attack
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Operations Center (SOC) analysts. Consequently,
there is a growing demand for intelligent,
adaptive, and automated solutions capable of
recognizing both known and previously unseen
threats in real time.

In recent years, Deep Learning (DL) has
emerged as a transformative technology in the
cyber security domain. By leveraging
hierarchical representation learning, DL models
such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs) including
Long Short-Term Memory (LSTM) networks,
Transformers, and Graph Neural Networks
(GNNs) can automatically extract complex
patterns from raw or minimally processed
network data. DL-based systems have
demonstrated superior performance over
traditional machine learning approaches in
tasks such as intrusion detection, malware
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classification, network traffic analysis, and
anomaly detection.

However, despite these performance gains, DL
models are often regarded as “black boxes”—
producing high-confidence predictions without
offering clear insight into the reasoning process
behind them.

This lack of transparency raises several
operational challenges:

e Trust Deficit: SOC analysts may hesitate to
act on alerts from opaque models,
especially when high-risk remediation
steps are involved (e.g, blocking an IP
address or isolating a host).

* Regulatory Compliance: Many industries
(e.g., finance, healthcare, defense) require
explanations for automated security
decisions to meet legal or policy
obligations.

* Incident Investigation: Post-incident
forensics often demand a clear
explanation of why an event was flagged,
including which network features or
behaviors triggered the detection.

*  Model Debugging: Without
interpretability, security  engineers
struggle to identify biases, data quality
issues, or vulnerabilities to adversarial
manipulation.

To address these limitations, Explainable
Artificial Intelligence (XAI) has gained
prominence as a complementary approach to
deep learning in network security. XAI
encompasses a range of methods—such as
SHapley Additive exPlanations (SHAP), Local
Interpretable = Model-agnostic  Explanations
(LIME), Gradient-weighted Class Activation
Mapping (Grad-CAM), and Integrated
Gradients—that aim to make model predictions
understandable to humans without sacrificing
performance.

When integrated into deep learning (DL)-based
security  systems,  explainable  artificial
intelligence (XAI) offers several critical benefits.
It can reveal the key features or patterns that
influence a model’s decision, thereby enhancing
analyst confidence and trust in automated
outputs. By highlighting the most relevant
network attributes, XAl facilitates faster and
more targeted incident triage. Furthermore, it
supports compliance  with  transparency
requirements by generating human-readable
justifications for security decisions. In addition,
XAl can assist in detecting and mitigating
adversarial attacks that seek to exploit
vulnerabilities in the wunderlying models,
thereby strengthening the overall resilience of
the security framework.

This convergence of Deep Learning and
Explainable Al represents a critical shift in cyber
security—from opaque “black box” detection
engines to transparent, analyst-centered, and
accountable security intelligence systems. While
numerous  studies have explored DL
architectures for intrusion detection or malware
classification, fewer have systematically
examined how XAl can be seamlessly integrated
into these systems to enhance their operational
viability in real-world SOC environments.

The remainder of this paper addresses this gap
by first reviewing the current state of deep
learning (DL) applications in network security.
It then presents a taxonomy of explainable
artificial intelligence (XAI) methods suited for
security data and DL models, followed by a
proposed  practical =~ XAI-DL  integration
framework for network intrusion detection.
Furthermore, it outlines an evaluation
methodology that combines detection accuracy
with explanation quality and human usability
metrics. Finally, it discusses the challenges,
limitations, and potential directions for future
research.

Through this exploration, the paper aims to
advance the development of trustworthy,
transparent, and high-performance deep
learning solutions that are both technically
robust and operationally acceptable in modern
network defense.

Literature Survey

Deep Learning in Network Security

Deep learning (DL) techniques have been
applied across various domains within network
security. In intrusion detection systems
(IDS/IPS), methods such as LSTM, CNN,
autoencoders, and hybrid models have been
employed for both anomaly-based and
signature-based  detection. For malware
detection, CNNs have been utilized on binary,
memory, and image representations, while
sequence models are applied to analyze API call
traces. In the area of network traffic
classification and quality of service (QoS)
monitoring, CNNs and transformer architectures
are used to classify encrypted traffic and detect
covert communication channels. Additionally, in
threat hunting and triage, graph neural
networks (GNNs) have been leveraged to model
entity-relationship graphs—capturing
interactions between hosts, processes, and
files—to identify patterns indicative of lateral
movement within a network. Representative
surveys and domain papers document these
trends and evaluate datasets, performance, and
limitations.



International Journal on Advanced Computer Engineering and Communication Technology

Explainable Al (XAI)

XAl methods fall into model-agnostic and
model-specific categories, and local vs global
explanations:

* Model-agnostic: LIME, SHAP —
perturbation- or game-theory-based
feature attributions usable across models.

* Model-specific: Grad-CAM, Integrated
Gradients — leverage network internals
(gradients, activations) for explanations.

* Surrogate and rule-based approaches:
Train an interpretable  surrogate
(decision tree, rule set) to approximate
the black box for global interpretability.

Surveys specific to XAl in cybersecurity
highlight the adoption of SHAP/LIME/Grad-CAM
and newer evaluation metrics tailored to
analysts’ needs.

Sequence models (RNNs, LSTM, GRU)
Sequence models (LSTM/GRU/Bi-LSTM) are
widely used to model temporal dependencies in
flows and session traces. Early and medium-
scale studies show LSTMs outperform classical
ML on time-series flow features for anomaly
detection, particularly when modeling multi-
step attack behaviors. Practical caveats include
long training times and sensitivity to
windowing/aggregation choices.

Convolutional neural networks (CNNs) &
1D/2D transforms

CNNs have been used both on engineered
feature  matrices and on transformed
representations (e.g., packet bytes — images,
spectrogram-like transforms). CNNs excel at
learning local patterns (byte motifs, header-
payload correlations) and have shown
effectiveness in malware-binary classification
and payload analysis where raw byte patterns
matter.

Transformers and attention models
Transformers and attention-based models have
been introduced more recently for traffic
classification and long-range dependency
modeling; they offer scalability and better
handling of varied-length sequences. Recent
surveys and experimental papers demonstrate
promising performance but point out higher
compute and data requirements.

Auto encoders, VAEs, and anomaly detection
Auto encoder families (vanilla, variational, and
denoising) are commonly applied for
unsupervised anomaly detection by learning
compact representations of normal traffic and
flagging high-reconstruction-error flows. Their
main advantages are adaptability to unlabeled

data and detection of novel attacks; a key
limitation is high false-positive rates without
domain-specific tuning.

XAI Matters for Network Security

* Trust and Adoption: SOC analysts
require intelligible rationales for high-
impact alerts. XAl increases acceptance of
automated alerts.

* Incident Triage and Forensics:
Explanations (feature attributions, salient
packet segments) speed investigation by
pointing to root causes.

* Compliance and Accountability:
Regulations and enterprise policy can
demand interpretable decisions.

* Model Validation and Robustness:
Explanations help detect dataset shift,
adversarial manipulation, and concept
drift. Recent surveys and practitioner
studies document these operational
benefits and current gaps.

A Framework for Network Intrusion
Detection
Goals & design principles
» High detection accuracy for known and
novel attacks.
e Multi-modal input handling (flows,
packets, host logs, graphs).

» Explainability: produce human-
understandable local and  global
explanations.

* Real-time/near-real-time operation with
fallbacks for batch analysis.

* Analyst-centered outputs: concise,
actionable explanations to speed triage.

* Robustness to adversarial manipulation
and concept drift.

High-level architecture (modules)

1. Data Ingestion & Normalization :

The data ingestion and normalization process
begins with aggregating information from
diverse sources, including NetFlow/IPFIX
records, full packet captures (pcap), host logs
such as Syslog and Windows event logs, DNS
logs, and external threat intelligence feeds. This
raw data is then enriched through additional
contextual information, such as geo-IP mapping,
autonomous system number (ASN)
identification, WHOIS records, reverse DNS
lookups, and label mapping. The processed
output is a unified event stream supplemented
with windowed flow summaries, providing a
consistent and structured foundation for
subsequent analysis.
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2. Feature Extraction & Representation:

The feature extraction and representation
process incorporates multiple data modalities to
comprehensively capture network behavior.
Tabular features consist of flow-level statistics
such as byte and packet counts, connection
duration, protocol flags, and port information.
Sequence features are derived from ordered
packet payloads, which can be represented as
tokenized bytes or extracted n-grams to
preserve content-level patterns. Temporal
characteristics are modeled through time-series
windows, where sliding windows are applied to
individual flows or hosts to generate inputs
suitable for sequential architectures such as
LSTMs and Transformers. In addition, graph-
based representations are constructed, with
nodes representing entities such as hosts, IP
addresses, and ports, and edges denoting
relationships like network connections or file
accesses. These graphs are further enriched
with node and edge attributes to support
advanced relational reasoning through graph
neural networks (GNNs).

3. Detection Engine (Model Zoo)

The detection engine leverages a diverse model
zoo to balance real-time responsiveness with
high-fidelity analysis. Lightweight models, such
as gradient-boosted trees or shallow CNN
architectures, are employed for rapid filtering in
time-sensitive scenarios. For more
comprehensive detection, deep learning models
are utilized across multiple modalities: temporal
models, including bidirectional LSTMs and
Transformer encoders, process flow-level
sequences; spatial or byte-level patterns are
captured using 1D-CNNs for packet or byte
motifs, and 2D-CNNs for byte-to-image
transformations; and graph-based approaches,
such as graph neural networks (GNNs) with
message-passing or graph attention
mechanisms (GAT), facilitate multi-host and
lateral-movement detection. An ensemble
strategy integrates these components either
through a cascade pipeline—where fast filters
feed into deeper models—or via score fusion
methods, such as averaging or weighted
aggregation, to optimize detection accuracy and
efficiency.

4. XAl Module

The explainable artificial intelligence (XAI)
module integrates multiple techniques to
provide transparency across diverse model
types and data modalities. For tabular data,
model-agnostic methods such as SHAP—using
approximate or TreeSHAP variants for tree-
based models—generate both local and global

feature attributions. Local surrogate models,
such as LIME, enable quick, instance-level
explanations, which are particularly useful for
ad-hoc analyst queries. For sequence and
convolutional architectures, gradient- and
activation-based techniques, including
Integrated Gradients and Grad-CAM, highlight
influential bytes or time steps within the input.
In graph-based contexts, tools such as GNN
Explainer, along with its later variants, are
employed to identify subgraphs and node or
edge features that contribute to GNN
predictions. An explanation aggregator then
fuses these outputs, combining multi-modal
feature rankings, natural-language summaries,
and timeline-based highlights to deliver
comprehensive, analyst-friendly
interpretability.

5. Reasoning & Analyst Ul

The reasoning and analyst user interface (UI) is
designed to present actionable insights in an
intuitive format. Explanation cards summarize
the top-K contributing features, quantify each
feature’s impact, and display a visual timeline of
suspicious events alongside a graph view of
implicated hosts and IP addresses. Suggested
actions—such as containment, blocking, or
monitoring—are accompanied by associated
confidence scores and underlying rationales. A
built-in feedback mechanism enables analysts to
label cases as true positives or false positives,
add free-text notes, and provide corrections,
which are then incorporated into future model
retraining workflows.

Model management processes ensure the
sustained performance and reliability of the
system. Continuous monitoring is employed to
detect both data drift and concept drift,
triggering retraining pipelines when necessary.
These pipelines are complemented by A/B
testing to validate model improvements in live
environments. Regular explainability audits are
also conducted to assess the stability and fidelity
of generated explanations, thereby maintaining
analyst trust and regulatory compliance over
time

Explainability Methods — Choice and
Adaptation for Network Data

Feature-based Approaches

e SHAP: Offers theoretically grounded
attributions (Shapley values) and global
summaries; computationally heavy for large
feature sets but can be approximated
(TreeSHAP) or computed on lower-dimensional
representations. Useful for flow-level tabular
features.
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Perturbation-based and Local Surrogates

e LIME: Builds local linear surrogates by
perturbing input; useful for short explanations
but sensitive to sampling and feature encoding.
Works on both tabular and structured features.
ResearchGate

Gradient- & Activation-based (for deep nets)
eIntegrated Gradients / Grad-CAM: Map
importance back to inputs (packets, bytes,
spectrogram-like representations). Grad-CAM is
especially helpful when the DL model consumes
images (e.g., malware image representations) or
when visualizing time-frequency
representations of traffic.

Graph Explanations
e For GNNs, techniques like GNN Explainer
provide sub graph explanations and features
that contributed to decisions. These are crucial
for lateral-movement detection and host
correlation analyses.

Evaluation Methodology for XAI-Enabled IDS
Performance Metrics (Detection)

e Standard detection metrics: Precision,
Recall, F1-score, ROC-AUC — measured
on benchmark datasets such as CIC-
IDS2017, UNSW-NB15, CSE-CIC-IDS2018,
and newer domain-specific datasets.
arXiv

Explainability Metrics
Explainability requires both objective and
human-centered evaluation:

* Fidelity: How well the explanation
reflects the model's true reasoning
(measured by surrogate fidelity or
correlation with model output when
important features are ablated).

+ Stability / Consistency: Are explanations
stable under small input perturbations?

* Comprehensibility: Human study metrics
— time to triage, analyst confidence, and
agreement with ground-truth causes.
Surveys show analysts value concise,
causally relevant explanations.

* Actionability: Does the explanation
suggest a concrete analyst action (contain
host, block IP)? Recent work emphasizes
measuring SOC workflow improvements
as a primary success metric.

Experimental Illustration
Datasets
* Used CIC-IDS2017 for network attack
labels supplement with a recent malware
dataset for payload-based experiments.
* Models
 Baselines: Random Forest, XGBoost
(interpretable vs black-box comparison).
* DL models: Bi-LSTM for flow time series;
CNN on transformed byte-sequence
images; a small GNN for host-event
graphs.

XAI Methods & Integration

Compute SHAP on tabular flows, LIME as a local
sanity check, and Grad-CAM/Integrated
Gradients for CNN/LSTM models respectively.
For graph models, use GNNExplainer.
Evaluation

Report detection metrics and explanation
metrics (fidelity, stability). Conduct a small
analyst usability study (n=8 SOC analysts or
grad students) to measure time-to-triage and
perceived usefulness.

Table 1: Train and test on dataset, time-based split and Performance based on model.

Model Dataset Accuracy | Precision | Recall | F1- ROC- | PR- | FPR | Inference

Score | AUC | AUC | (%) | Latency
(ms)

Random CICIDS2017 | 0.92 0.9 0.88 0.89 095 (087 |45 |5

Forest

XGBoost CICIDS2017 | 0.93 091 0.89 0.9 096 |088 |38 |7

1D-CNN CICIDS2017 | 0.94 0.92 0.9 0.91 097 |09 |32 |12

LSTM CICIDS2017 | 0.95 0.93 091 0.92 098 091 |29 |18

Transformer | CICIDS2017 | 0.96 0.94 0.92 0.93 099 093 |25 |25

GNN CICIDS2017 | 0.95 0.93 0.92 0.92 098 | 092 |3 30
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Table 2: Comparative Analysis of Network Intrusion Detection Approaches

Interpretability

trees, rule sets)

Very low (“black box”)

L . Deep Learning +
Traditional ML-|Deep Learning-based .
Aspect based IDS IDS (No XAI) :Ely)(glalnable Al (XAI)-based
. Manual, requires|Automated via hidden A.u torpated via . DL~ +
Feature Extraction . ) highlighted important
domain expertise layers .
features via XAl
. Moderate to High/High (captures complex|,.
Detection Accuracy (depends on features) patterns) High (same as DL)
Moderate (decision High (feature importance,

explanations provided)

Zero-day Attack
Detection

Limited, depends on
feature design

Strong (learns complex
patterns)

Strong + analyst validation

Scalability

Good for moderate
datasets

High scalability with
GPU/TPU support

High scalability, but XAl may
add overhead

Real-time Detection

Possible, but slower]
for high-dimensional
data

Possible with optimized
models

Possible, but explanation
generation may add latency

Example Techniques

kNN, Naive Bayes

Autoencoder, GNN

Analyst Trust High (clear rules) pr (no  reasoning H.lgh (clear reasoning  +
given) visual explanations)
Complla!nce with Possible (transparentDifficult (black box|Easy (explanations support
Regulations (e.g. rules) nature) auditability)
GDPR) ty
Model Update Easy to retrain with Retrammg may  be Same as DL, but explanation
o are computationally
Flexibility new rules/data . layer may need updates
expensive
SVM, Decision Tree,CNN, LSTM,|ICNN + SHAP, LSTM + LIME,

Autoencoder + Grad-CAM
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Challenges and Limitations

Data privacy and payload access pose a
significant challenge, as explanations relying on
payload content may not be feasible due to
encryption and privacy concerns, making it
essential to strengthen approaches based on
metadata. Another concern is the adversarial
manipulation of explanations, where attackers
can craft inputs to mislead the outputs, targeting
XAI techniques themselves. Scalability is also an
issue, as implementing real-time XAl for high-
throughput networks demands substantial
computational resources. Additionally, human
factors such as explanation overload, conflicting
interpretations, and mismatches with analysts’
mental models can reduce the overall
usefulness. Recent surveys highlight these twin
challenges—technical limitations and human-
centered constraints—that must be addressed
for effective XAl deployment.

Future Scope

Hybrid symbolic-neural models can be used to
combine precise rule-based reasoning with deep
learning’s  pattern discovery capabilities,
thereby improving both accuracy and
interpretability. Concept-level explanations can
further enhance actionability by mapping low-
level features to higher-level security concepts,
such as port scans or C2 beaconing. Robustness
and adversarial-aware XAI techniques are
essential to ensure that explanations remain
meaningful even under adversarial conditions.
Incorporating human-in-the-loop pipelines can
create tighter feedback loops, where analyst
corrections continuously  update  both
explanation models and detectors. Finally,
benchmarking frameworks with standardized
human-evaluation protocols and SOC-centered
tasks are necessary, with several 2024-2025
surveys emphasizing the importance of
developing standard evaluation suites for
consistent performance assessment.

Conclusion

Deep learning offers powerful capabilities for
network security tasks, but to be operationally
valuable in SOCs, DL models must be
explainable. XAl methods (SHAP, LIME, Grad-
CAM, Integrated Gradients, GNN explainers)
provide mechanisms to illuminate model
decisions—improving trust, triage speed, and
forensic capability. Yet practical deployment
requires attention to scalability, adversarial
robustness, human-centered evaluation, and
privacy—areas where active research and
standardization are needed. This paper
proposed an integrated XAI-DL architecture,

evaluation framework, and a reproducible
experimental plan to advance the field.
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