International Journal on Advanced Computer Engineering and Communication Technology

71

Archives available at

journals.mriindia.com

International Journal on Advanced Computer Engineering

and Communication Technology

Sl ¥

[SSN: 2278 -5140

Volume 14 Issue 01,2025

Stock Price Prediction Using TD3

1Dr. Ankita V karale, 2Tejas Verma, 3Harshal Sonawane, 4Tejas Patil, >Vivek Chaudhari
Email: anikta.karale@sitrc.org, 2tejasvarma0807 @gmail.com, 3sonawaneharshal568@gmail.com,
“tejaspatill9384@gmail.com, Schaudharivivek004@gmail.com

Peer Review Information

Submission: 1 Sept 2025
Revision: 28 Sept 2025
Acceptance: 12 Oct 2025

Keywords

Reinforcement Learning,
Deep Deterministic Policy
Gradient (DDPG), Twin
Delayed Deep Deterministic
Policy Gradient (TD3),
Algorithmic Trading, Risk-
Aware Portfolio
Management, Deep Neural
Networks, Financial
Markets.

Abstract
Financial markets are complex, dynamic, and highly non-linear systems
where conventional rule-based trading models struggle to adapt to
changing price patterns. This work presents a reinforcement-learning-
driven framework for stock price prediction and trading strategy
optimization based on the Twin Delayed Deep Deterministic Policy
Gradient (TD3) algorithm. The proposed system integrates data
preprocessing, environment simulation, and policy training into a
reproducible end-to-end pipeline that functions efficiently even on limited
hardware resources
The study addresses key challenges such as non-stationarity, transaction
costs, and risk-adjusted performance by embedding drawdown penalties
and portfolio constraints directly into the learning process. Unlike discrete-
action methods, TD3 enables continuous position sizing, leading to
smoother and more realistic trade execution. The implementation follows
an Agile development approach, ensuring iterative validation and
reproducibility across data sources. Evaluation metrics such as Sharpe
ratio, total return, and maximum drawdown are employed to assess agent
performance
Experimental results validate that modern reinforcement-learning
techniques can produce adaptive, risk-aware trading policies capable of
outperforming traditional heuristic systems. The proposed architecture
thus bridges the gap between theoretical DRL algorithms and practical
algorithmic-trading applications, offering a scalable foundation for future
quantitative-finance research.

Introduction

directly from data through interaction with

Background and Motivation

Financial markets are dynamic, highly stochastic
systems influenced by multiple interacting
factors such as volatility, liquidity, and investor
sentiment. Traditional algorithmic-trading
approaches—typically based on fixed rule sets or
heuristic technical indicators—often fail to
generalize under non-stationary market
behavior [3], [4].

To overcome these limitations, recent studies
have shifted toward reinforcement-learning (RL)
techniques capable of learning optimal policies

© 2025 The Authors. Published by MRI INDIA.

simulated environments [1], [5].

The Twin Delayed Deep Deterministic Policy
Gradient (TD3) algorithm [1] represents a major
improvement in continuous-action RL for
quantitative finance. By employing twin critic
networks, delayed policy updates, and target-
policy smoothing, TD3 mitigates over-estimation
bias and stabilizes training [2]. This research
leverages those strengths to develop a risk-
aware, adaptive trading agent capable of
continuous position sizing and realistic decision-
making under transaction-cost constraints [6].

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://journals.mriindia.com/
https://journals.mriindia.com/
https://journals.mriindia.com/

Stock Price Prediction Using TD3

Problem Definition
Despite extensive research in algorithmic
trading, several key challenges persist:

1. Non-stationarity and Noise: Market data
are inherently noisy and time-varying,
making it difficult for static strategies to
adapt [5].

2. Risk Management: Incorporating
drawdown limits and transaction costs
remains a major hurdle for realistic
portfolio control [7].

3. Exploration-Exploitation Balance:
Continuous action spaces require robust
balancing between exploration and
exploitation to prevent policy instability

[1].

4. Computational Constraints: High-
fidelity RL training often demands
significant hardware resources; thus,

designing an efficient yet reproducible
system for low-resource environments is
essential [6].
The proposed TD3-based Stock-Price-Prediction
(TD3SP) system addresses these issues by
building a modular, reproducible pipeline
combining preprocessing, simulation, and
learning. It validates that RL agents can learn
profitable, risk-adjusted strategies under
practical market assumptions [5], [8].
C. Objectives
The main objectives of this work are:

e To design an end-to-end pipeline
integrating feature engineering, market
simulation, and TD3 agent training.

e To implement risk-aware reward shaping
by incorporating drawdown penalties and
transaction-cost modeling [6], [7].

e To achieve continuous position-size
optimization rather than discrete
buy/hold/sell decisions [1].

e To evaluate strategy robustness using
financial metrics such as Sharpe Ratio,
total returns, and maximum drawdown
[5].

e To ensure experimental reproducibility
and accessibility even on constrained
hardware [8].

Literature Review

Traditional Approaches and Limitations
Early algorithmic-trading systems primarily
relied on rule-based or technical-indicator-
driven strategies such as moving averages, RSI,
and Bollinger Bands. These methods, though
interpretable, struggled with non-stationary
market conditions and were unable to capture
long-term temporal dependencies or dynamic
risk behavior [5], [7]. Similarly, supervised-
learning approaches like regression and

672

classification models depended on static datasets
and lacked the adaptive feedback necessary for
sequential decision-making. Consequently, their
predictive power diminished when market
conditions changed rapidly or exhibited
nonlinear dependencies [3], [6].

Emergence of Reinforcement Learning in
Finance

Reinforcement Learning (RL) has emerged as a
promising paradigm for autonomous trading due
to its capability to learn policies through trial-
and-error interactions with a simulated market
environment. RL agents optimize cumulative
rewards, representing profit or risk-adjusted
return, through continual interaction with
historical or synthetic market data [3], [5].

Early financial RL studies employed Deep Q-
Networks (DQN) to model discrete trading
actions such as buy, sell, and hold [4]. However,
DQN-based approaches were limited to small
action spaces and often suffered from instability
and overestimation bias. To address these issues,
Deterministic Policy Gradient (DPG) and its
deep variant DDPG were introduced to handle
continuous control tasks [2]. Despite their
success, these algorithms were prone to
divergence and high variance in financial
domains, motivating further research into
improved actor-critic methods [1].

Advancements through TD3
The Twin Delayed Deep Deterministic Policy
Gradient (TD3) algorithm [1] significantly
enhanced the performance of DDPG by
introducing three stabilizing mechanisms:
1. Twin Critics: Reducing
overestimation by maintaining
independent critic networks.
2. Delayed Policy Updates: Updating the
actor less frequently to stabilize learning.
3. TargetPolicy Smoothing: Adding clipped
noise to the target policy to regularize

value
two

updates and prevent sharp value
fluctuations.
These innovations collectively improved

convergence speed and reduced variance in
policy learning. Several studies demonstrated
that TD3 achieves higher Sharpe ratios and lower
maximum drawdowns compared to DDPG or Q-
learning frameworks in financial time-series
tasks [5], [8], [9]. The algorithm’s ability to
operate in continuous action spaces allows for
more realistic position sizing and smoother
portfolio adjustments.

International Journal on Advanced Computer Engineering and Communication Technology

Methodology

System Architecture

The proposed Twin Delayed Deep Deterministic
Policy Gradient (TD3)-based stock-price-
prediction framework follows a modular, layered
architecture comprising four interconnected
components: the Data Layer, Feature Layer,
Environment Layer, and Learning Layer [1],
[5].

e Data Layer: Responsible for retrieving,
cleaning, and structuring historical OHLCV
market data using sources such as Yahoo
Finance [17].

o Feature Layer: Generates technical
indicators—Moving Averages, RSI, MACD,
Bollinger Bands, ATR, and Momentum—
through TA-Lib and Pandas libraries [18],
[14].

e Environment Layer: Implements a
custom Gymnasium-compatible trading
simulator that models portfolio states,
cash balance, transaction costs, drawdown
penalties, and position limits [16], [7].

e LearningLayer: Hosts the TD3 agent built
with PyTorch, integrating twin critic
networks, actor network, replay buffer,
and delayed target-policy updates [13],
[1].

This modular structure ensures scalability,
flexibility, and reproducibility across datasets
and markets [6], [9].

Data Pre-Processing and Feature Engineering
Historical market data are first cleaned to handle
missing values and noise, followed by
normalization and segmentation into time-series
windows. A comprehensive suite of indicators
provides richer market context, enabling the
agent to capture momentum, volatility, and
regime shifts [5], [8].
Feature scaling employs a min-max
transformation computed only on training data
to avoid data leakage and ensure consistent
statistical representation [5], [6].

Trading Environment Simulation

The environment models a realistic trading
scenario in which the RL agent operates with
continuous actions ranging from -1 to +1 to
represent short and long positions [16].
Each environment step updates portfolio values
by applying transaction costs, position limits, and
drawdown constraints [7]-
The agent receives a reward that balances
realized profit against risk and cost penalties.
This risk-aware feedback loop allows the agent to
learn stable and capital-preserving strategies
through iterative experience replay [1], [5], [8].

673

D. TD3 Agent Design and Training

The TD3 agent employs twin critic networks to
mitigate Q-value overestimation and a delayed-
update actor to improve policy stability [1], [2].
Key components include:

o Experience Replay: Stores past state-
action-reward tuples for batch learning.

e Twin Critic Networks: Estimate action
values and average the results to reduce
bias.

¢ Delayed Policy Updates: Actor weights
are updated less frequently to stabilize
convergence.

o Target Network Soft Updates: Smooth
parameter transfer between current and
target networks.

o Exploration Noise: Clipped Gaussian
noise enhances exploration while
maintaining policy smoothness [9].

Training continues until validation performance
(Sharpe ratio and maximum drawdown)
stabilizes. Hyper-parameters such as learning
rate, discount factor, and batch size are tuned
iteratively [5], [6].

Workflow Overview

The complete training pipeline of the TD3-based
trading agent is summarized in Fig. 1. The
process begins with data acquisition and feature
engineering, followed by environment and agent
initialization. The core training loop iteratively
performs environment steps, records transitions,
and updates model parameters until
convergence. After training, the system evaluates
the agent on a test set, generates performance
plots, and saves the trained model for
deployment [5], [7], [8].

+ Start }

X .
| Fetch Market Data

-

| Engineer Features

. 2
Iniatlizize Environment & Agent

-
Training Loop

Yes

——] Environment Step i» Reset Environment

L 2

Store Transition
No T

B
Yes

i = No
—+——~——>» Check Episode End |-

Continue Training?

Evaluate on Test Set

-

» Generate Performance Plots

[Enid
Fig. 1: Overall workflow of the TD3-based stock-
price-prediction system.

Stock Price Prediction Using TD3

The workflow begins with market-data fetching
and feature engineering, proceeds through
environment initialization and iterative training,
and concludes with evaluation, performance
visualization, and model persistence [1], [5], [7]-

Results And Discussion

Experimental Setup

The TD3-based Stock Price Prediction (TD3SP)
framework was trained and validated using
historical OHLCV market data fetched from
Yahoo Finance [17]. Feature computation was
handled via Pandas and TA-Lib [14], [18].
The implementation used Python 3.9 with
PyTorch 1.x [13] on a mid-range workstation
(Intel i7 CPU, 16 GB RAM, optional GPU
acceleration). The system followed the Agile
SDLC approach to allow iterative testing and
hyper-parameter refinement [6].

The agent trained over multiple epochs, with
batch sampling from a replay buffer of 10°
transitions. Actor and critic networks each
consisted of three hidden layers (256-128-64
neurons) employing ReLU activations. Training
continued until validation performance
stabilized in terms of Sharpe ratio and maximum
drawdown [5].

Observed
Outcomes
After convergence, the TD3SP agent produced
risk-adjusted, adaptive trading behaviors.
Continuous-action control yielded smoother
portfolio curves compared to discrete-action
baselines [1], [9].

Key observed outcomes include:

o Stable Convergence: The twin-critic and
delayed-update design improved stability
and reduced Q-value overestimation [1],
[2].

o Enhanced Risk Control: Integration of
drawdown and transaction-cost penalties
guided the agent toward conservative yet
profitable decisions [7].

e Adaptive Position Sizing: The model
dynamically adjusted exposure in
response to market volatility,
outperforming fixed-rule heuristics [5],
[8].

e Improved Profitability: Validation
results indicated higher Sharpe ratios and
lower drawdowns relative to DDPG and
Buy-and-Hold baselines [9], [10].

These findings confirm the feasibility of applying
TD3 reinforcement learning to real-market
simulations under limited computational
resources [6].

Performance and Expected

674

Advantages and Practical Implications
The major advantages observed are:

e Realistic Market Simulation: The
inclusion of transaction costs and portfolio
constraints bridges the gap between
theoretical modeling and live trading [7].

e Modularity and Reproducibility: Each
component—data, features, environment,
and agent—is independent, allowing rapid
experimentation [6].

o Low-Resource Feasibility: The pipeline
trains effectively even on CPU-only
systems [9].

e Risk-Aware Learning: The design
prioritizes steady returns over aggressive
gains, aligning with institutional risk
profiles [5].

Conclusion

This study successfully demonstrates the design
and implementation of a Twin Delayed Deep
Deterministic Policy —Gradient (TD3)-based
reinforcement-learning framework for adaptive
algorithmic trading. By integrating feature
engineering, realistic market simulation, and
risk-aware reward shaping, the system
transitions from theoretical reinforcement
learning toward practical, deployable financial
modeling [1], [5], [7]-

The results validate that TD3’s enhancements—
twin critics, delayed updates, and policy
smoothing—provide superior stability and
convergence compared to earlier actor-critic
methods such as DDPG [2], [6]. The proposed
TD3SP pipeline achieves higher Sharpe ratios and
reduced drawdowns, confirming its effectiveness
in balancing profitability = with capital
preservation [8], [9].

The modular architecture (Data, Feature,
Environment, and Learning layers) ensures
reproducibility, scalability, and educational
accessibility, making it a viable foundation for
further quantitative-finance research and Al-
based portfolio design [5], [10].

In summary, this work establishes a strong
baseline for applying deep reinforcement
learning in financial markets under practical
constraints, highlighting the viability of data-
driven, risk-adjusted, and resource-efficient
trading intelligence systems.

References

[1] S. Fujimoto, H. van Hoof, and D. Meger,
“Addressing function approximation error in
actor-critic methods,” Proc. 35th Int. Conf. Mach.
Learn. (ICML), 2018. [TD3 Paper]

[2] T. P. Lillicrap, J.]J. Hunt, A. Pritzel et al,
“Continuous control with deep reinforcement

International Journal on Advanced Computer Engineering and Communication Technology

learning,” Int. Conf. Learn. Represent. (ICLR),
2016. [DDPG Paper]

[3] R. S. Sutton and A. G. Barto, Reinforcement
Learning: An Introduction, 2nd ed. Cambridge,
MA, USA: MIT Press, 2018.

[4] V. Mnih, K. Kavukcuoglu, D. Silver et al,
“Human-level control through deep
reinforcement learning,” Nature, vol. 518, pp.
529-533, 2015. [Deep Q-Network]

[5] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Daij,
“Deep direct reinforcement learning for financial
signal representation and trading,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653-
664, 2017.

[6] Z. Jiang, D. Xu, and]. Liang, “A deep
reinforcement learning framework for the
financial portfolio management problem,” arXiv
preprint arXiv:1706.10059, 2017.

[71]. Moody and M. Saffell, “Learning to trade via
direct reinforcement,” IEEE Trans. Neural Netw.,
vol. 12, no. 4, pp. 875-889, 2001.

[8] N. Majidi, M. Shamsi, and F. Marvasti,
“Algorithmic trading using continuous action-
space deep reinforcement learning,”
ScienceDirect, 2024.

[9] “Quantitative trading of stocks based on TD3
algorithm,” Highlights Sci. Eng. Technol, vol. 60,
2023.

[10] “Deep reinforcement learning strategies in
finance,” arXiv preprint arXiv:2407.09557, 2024.

[11] A. Géron, Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow, 2nd ed.
Sebastopol, CA, USA: O’Reilly Media, 2019.

675

[12] F. A. Olston, Python for Finance, 2nd ed.
Sebastopol, CA, USA: O’Reilly Media, 2018.

[13] PyTorch Documentation, [Online]. Available:
https://pytorch.org/docs/stable/index.html

[14] Pandas Documentation, [Online]. Available:
https://pandas.pydata.org/docs

[15] NumPy Documentation, [Online]. Available:
https://numpy.org/doc/

[16] Gymnasium Documentation, [Online].

Available: https://gymnasium.farama.org/

[17] Yahoo Finance API, [Online]. Available:
https: i.org/project/yfinance

[18] TA-Lib Documentation, [Online]. Available:

https://ta-lib.or
[19] Matplotlib Documentation, [Online].
Available:

https://matplotlib.org/stable/contents.html

[20] Scikit-learn Documentation, [Online].
Available: https://scikit-
learn.org/stable/documentation.html

[21] IEEE Xplore Digital Library, [Online].

Available: https://ieeexplore.ieee.org/

[22] arXiv Preprint Server, [Online]. Available:
https://arxiv.or

[23] Stack Overflow, [Online]. Available:

https://stackoverflow.com/

[24] Towards Data Science, [Online]. Available:
https://towardsdatascience.com

[25] Investopedia, [Online]. Available:

https://www.investopedia.com/

https://pytorch.org/docs/stable/index.html
https://pandas.pydata.org/docs/
https://numpy.org/doc/
https://gymnasium.farama.org/
https://pypi.org/project/yfinance/
https://ta-lib.org/
https://matplotlib.org/stable/contents.html
https://scikit-learn.org/stable/documentation.html
https://scikit-learn.org/stable/documentation.html
https://ieeexplore.ieee.org/
https://arxiv.org/
https://stackoverflow.com/
https://towardsdatascience.com/

