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Abstract 
Financial markets are complex, dynamic, and highly non-linear systems 
where conventional rule-based trading models struggle to adapt to 
changing price patterns. This work presents a reinforcement-learning-
driven framework for stock price prediction and trading strategy 
optimization based on the Twin Delayed Deep Deterministic Policy 
Gradient (TD3) algorithm. The proposed system integrates data 
preprocessing, environment simulation, and policy training into a 
reproducible end-to-end pipeline that functions efficiently even on limited 
hardware resources 
The study addresses key challenges such as non-stationarity, transaction 
costs, and risk-adjusted performance by embedding drawdown penalties 
and portfolio constraints directly into the learning process. Unlike discrete-
action methods, TD3 enables continuous position sizing, leading to 
smoother and more realistic trade execution. The implementation follows 
an Agile development approach, ensuring iterative validation and 
reproducibility across data sources. Evaluation metrics such as Sharpe 
ratio, total return, and maximum drawdown are employed to assess agent 
performance 
Experimental results validate that modern reinforcement-learning 
techniques can produce adaptive, risk-aware trading policies capable of 
outperforming traditional heuristic systems. The proposed architecture 
thus bridges the gap between theoretical DRL algorithms and practical 
algorithmic-trading applications, offering a scalable foundation for future 
quantitative-finance research. 
 

 

Introduction 
Background and Motivation 
Financial markets are dynamic, highly stochastic 
systems influenced by multiple interacting 
factors such as volatility, liquidity, and investor 
sentiment. Traditional algorithmic-trading 
approaches—typically based on fixed rule sets or 
heuristic technical indicators—often fail to 
generalize under non-stationary market 
behavior [3], [4]. 
To overcome these limitations, recent studies 
have shifted toward reinforcement-learning (RL) 
techniques capable of learning optimal policies 

directly from data through interaction with 
simulated environments [1], [5]. 
The Twin Delayed Deep Deterministic Policy 
Gradient (TD3) algorithm [1] represents a major 
improvement in continuous-action RL for 
quantitative finance. By employing twin critic 
networks, delayed policy updates, and target-
policy smoothing, TD3 mitigates over-estimation 
bias and stabilizes training [2]. This research 
leverages those strengths to develop a risk-
aware, adaptive trading agent capable of 
continuous position sizing and realistic decision-
making under transaction-cost constraints [6]. 
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Problem Definition 
Despite extensive research in algorithmic 
trading, several key challenges persist: 

1. Non-stationarity and Noise: Market data 
are inherently noisy and time-varying, 
making it difficult for static strategies to 
adapt [5]. 

2. Risk Management: Incorporating 
drawdown limits and transaction costs 
remains a major hurdle for realistic 
portfolio control [7]. 

3. Exploration–Exploitation Balance: 
Continuous action spaces require robust 
balancing between exploration and 
exploitation to prevent policy instability 
[1]. 

4. Computational Constraints: High-
fidelity RL training often demands 
significant hardware resources; thus, 
designing an efficient yet reproducible 
system for low-resource environments is 
essential [6]. 

The proposed TD3-based Stock-Price-Prediction 
(TD3SP) system addresses these issues by 
building a modular, reproducible pipeline 
combining preprocessing, simulation, and 
learning. It validates that RL agents can learn 
profitable, risk-adjusted strategies under 
practical market assumptions [5], [8]. 
C. Objectives 
The main objectives of this work are: 

 To design an end-to-end pipeline 
integrating feature engineering, market 
simulation, and TD3 agent training. 

 To implement risk-aware reward shaping 
by incorporating drawdown penalties and 
transaction-cost modeling [6], [7]. 

 To achieve continuous position-size 
optimization rather than discrete 
buy/hold/sell decisions [1]. 

 To evaluate strategy robustness using 
financial metrics such as Sharpe Ratio, 
total returns, and maximum drawdown 
[5]. 

 To ensure experimental reproducibility 
and accessibility even on constrained 
hardware [8]. 

 
Literature Review 
Traditional Approaches and Limitations 
Early algorithmic-trading systems primarily 
relied on rule-based or technical-indicator-
driven strategies such as moving averages, RSI, 
and Bollinger Bands. These methods, though 
interpretable, struggled with non-stationary 
market conditions and were unable to capture 
long-term temporal dependencies or dynamic 
risk behavior [5], [7]. Similarly, supervised-
learning approaches like regression and 

classification models depended on static datasets 
and lacked the adaptive feedback necessary for 
sequential decision-making. Consequently, their 
predictive power diminished when market 
conditions changed rapidly or exhibited 
nonlinear dependencies [3], [6]. 
 
Emergence of Reinforcement Learning in 
Finance 
Reinforcement Learning (RL) has emerged as a 
promising paradigm for autonomous trading due 
to its capability to learn policies through trial-
and-error interactions with a simulated market 
environment. RL agents optimize cumulative 
rewards, representing profit or risk-adjusted 
return, through continual interaction with 
historical or synthetic market data [3], [5]. 
Early financial RL studies employed Deep Q-
Networks (DQN) to model discrete trading 
actions such as buy, sell, and hold [4]. However, 
DQN-based approaches were limited to small 
action spaces and often suffered from instability 
and overestimation bias. To address these issues, 
Deterministic Policy Gradient (DPG) and its 
deep variant DDPG were introduced to handle 
continuous control tasks [2]. Despite their 
success, these algorithms were prone to 
divergence and high variance in financial 
domains, motivating further research into 
improved actor–critic methods [1]. 
 
Advancements through TD3 
The Twin Delayed Deep Deterministic Policy 
Gradient (TD3) algorithm [1] significantly 
enhanced the performance of DDPG by 
introducing three stabilizing mechanisms: 

1. Twin Critics: Reducing value 
overestimation by maintaining two 
independent critic networks. 

2. Delayed Policy Updates: Updating the 
actor less frequently to stabilize learning. 

3. Target Policy Smoothing: Adding clipped 
noise to the target policy to regularize 
updates and prevent sharp value 
fluctuations. 

These innovations collectively improved 
convergence speed and reduced variance in 
policy learning. Several studies demonstrated 
that TD3 achieves higher Sharpe ratios and lower 
maximum drawdowns compared to DDPG or Q-
learning frameworks in financial time-series 
tasks [5], [8], [9]. The algorithm’s ability to 
operate in continuous action spaces allows for 
more realistic position sizing and smoother 
portfolio adjustments. 
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Methodology 
System Architecture 
The proposed Twin Delayed Deep Deterministic 
Policy Gradient (TD3)-based stock-price-
prediction framework follows a modular, layered 
architecture comprising four interconnected 
components: the Data Layer, Feature Layer, 
Environment Layer, and Learning Layer [1], 
[5]. 

 Data Layer: Responsible for retrieving, 
cleaning, and structuring historical OHLCV 
market data using sources such as Yahoo 
Finance [17]. 

 Feature Layer: Generates technical 
indicators—Moving Averages, RSI, MACD, 
Bollinger Bands, ATR, and Momentum—
through TA-Lib and Pandas libraries [18], 
[14]. 

 Environment Layer: Implements a 
custom Gymnasium-compatible trading 
simulator that models portfolio states, 
cash balance, transaction costs, drawdown 
penalties, and position limits [16], [7]. 

 Learning Layer: Hosts the TD3 agent built 
with PyTorch, integrating twin critic 
networks, actor network, replay buffer, 
and delayed target-policy updates [13], 
[1]. 

This modular structure ensures scalability, 
flexibility, and reproducibility across datasets 
and markets [6], [9]. 
 
Data Pre-Processing and Feature Engineering 
Historical market data are first cleaned to handle 
missing values and noise, followed by 
normalization and segmentation into time-series 
windows. A comprehensive suite of indicators 
provides richer market context, enabling the 
agent to capture momentum, volatility, and 
regime shifts [5], [8]. 
Feature scaling employs a min–max 
transformation computed only on training data 
to avoid data leakage and ensure consistent 
statistical representation [5], [6]. 
 
Trading Environment Simulation 
The environment models a realistic trading 
scenario in which the RL agent operates with 
continuous actions ranging from –1 to +1 to 
represent short and long positions [16]. 
Each environment step updates portfolio values 
by applying transaction costs, position limits, and 
drawdown constraints [7]. 
The agent receives a reward that balances 
realized profit against risk and cost penalties. 
This risk-aware feedback loop allows the agent to 
learn stable and capital-preserving strategies 
through iterative experience replay [1], [5], [8]. 

 
D. TD3 Agent Design and Training 
The TD3 agent employs twin critic networks to 
mitigate Q-value overestimation and a delayed-
update actor to improve policy stability [1], [2]. 
Key components include: 

 Experience Replay: Stores past state–
action–reward tuples for batch learning. 

 Twin Critic Networks: Estimate action 
values and average the results to reduce 
bias. 

 Delayed Policy Updates: Actor weights 
are updated less frequently to stabilize 
convergence. 

 Target Network Soft Updates: Smooth 
parameter transfer between current and 
target networks. 

 Exploration Noise: Clipped Gaussian 
noise enhances exploration while 
maintaining policy smoothness [9]. 

Training continues until validation performance 
(Sharpe ratio and maximum drawdown) 
stabilizes. Hyper-parameters such as learning 
rate, discount factor, and batch size are tuned 
iteratively [5], [6]. 
 
Workflow Overview 
The complete training pipeline of the TD3-based 
trading agent is summarized in Fig. 1. The 
process begins with data acquisition and feature 
engineering, followed by environment and agent 
initialization. The core training loop iteratively 
performs environment steps, records transitions, 
and updates model parameters until 
convergence. After training, the system evaluates 
the agent on a test set, generates performance 
plots, and saves the trained model for 
deployment [5], [7], [8]. 
 

 

Fig. 1: Overall workflow of the TD3-based stock-
price-prediction system. 
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The workflow begins with market-data fetching 
and feature engineering, proceeds through 
environment initialization and iterative training, 
and concludes with evaluation, performance 
visualization, and model persistence [1], [5], [7]. 
 
Results And Discussion 
Experimental Setup 
The TD3-based Stock Price Prediction (TD3SP) 
framework was trained and validated using 
historical OHLCV market data fetched from 
Yahoo Finance [17]. Feature computation was 
handled via Pandas and TA-Lib [14], [18]. 
The implementation used Python 3.9 with 
PyTorch 1.x [13] on a mid-range workstation 
(Intel i7 CPU, 16 GB RAM, optional GPU 
acceleration). The system followed the Agile 
SDLC approach to allow iterative testing and 
hyper-parameter refinement [6]. 
The agent trained over multiple epochs, with 
batch sampling from a replay buffer of 10⁵ 
transitions. Actor and critic networks each 
consisted of three hidden layers (256–128–64 
neurons) employing ReLU activations. Training 
continued until validation performance 
stabilized in terms of Sharpe ratio and maximum 
drawdown [5]. 
 
Observed Performance and Expected 
Outcomes 
After convergence, the TD3SP agent produced 
risk-adjusted, adaptive trading behaviors. 
Continuous-action control yielded smoother 
portfolio curves compared to discrete-action 
baselines [1], [9]. 
Key observed outcomes include: 

 Stable Convergence: The twin-critic and 
delayed-update design improved stability 
and reduced Q-value overestimation [1], 
[2]. 

 Enhanced Risk Control: Integration of 
drawdown and transaction-cost penalties 
guided the agent toward conservative yet 
profitable decisions [7]. 

 Adaptive Position Sizing: The model 
dynamically adjusted exposure in 
response to market volatility, 
outperforming fixed-rule heuristics [5], 
[8]. 

 Improved Profitability: Validation 
results indicated higher Sharpe ratios and 
lower drawdowns relative to DDPG and 
Buy-and-Hold baselines [9], [10]. 

These findings confirm the feasibility of applying 
TD3 reinforcement learning to real-market 
simulations under limited computational 
resources [6]. 
 

Advantages and Practical Implications 
The major advantages observed are: 

 Realistic Market Simulation: The 
inclusion of transaction costs and portfolio 
constraints bridges the gap between 
theoretical modeling and live trading [7]. 

 Modularity and Reproducibility: Each 
component—data, features, environment, 
and agent—is independent, allowing rapid 
experimentation [6]. 

 Low-Resource Feasibility: The pipeline 
trains effectively even on CPU-only 
systems [9]. 

 Risk-Aware Learning: The design 
prioritizes steady returns over aggressive 
gains, aligning with institutional risk 
profiles [5]. 

 
Conclusion  
This study successfully demonstrates the design 
and implementation of a Twin Delayed Deep 
Deterministic Policy Gradient (TD3)-based 
reinforcement-learning framework for adaptive 
algorithmic trading. By integrating feature 
engineering, realistic market simulation, and 
risk-aware reward shaping, the system 
transitions from theoretical reinforcement 
learning toward practical, deployable financial 
modeling [1], [5], [7]. 
The results validate that TD3’s enhancements—
twin critics, delayed updates, and policy 
smoothing—provide superior stability and 
convergence compared to earlier actor–critic 
methods such as DDPG [2], [6]. The proposed 
TD3SP pipeline achieves higher Sharpe ratios and 
reduced drawdowns, confirming its effectiveness 
in balancing profitability with capital 
preservation [8], [9]. 
The modular architecture (Data, Feature, 
Environment, and Learning layers) ensures 
reproducibility, scalability, and educational 
accessibility, making it a viable foundation for 
further quantitative-finance research and AI-
based portfolio design [5], [10]. 
In summary, this work establishes a strong 
baseline for applying deep reinforcement 
learning in financial markets under practical 
constraints, highlighting the viability of data-
driven, risk-adjusted, and resource-efficient 
trading intelligence systems. 
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