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Abstract 

The integration of Artificial Intelligence (AI) into neuroscience has 
significantly advanced the field of brain mapping. By leveraging machine 
learning (ML) and deep learning (DL) algorithms, researchers can analyze 
complex neuroimaging data, model cognitive functions, and uncover 
neural patterns with unprecedented accuracy and scale. This paper 
presents a comprehensive survey of AI-driven brain mapping techniques, 
spanning imaging modalities, computational methods, and application 
domains. We review the state-of-the-art algorithms used in structural and 
functional brain mapping, discuss their implementation across various 
imaging platforms, and explore key applications in disease diagnosis, 
cognitive neuroscience, and brain-computer interfaces. The paper also 
identifies current challenges and potential directions for future research in 
AI-based brain map.  

                   
Introduction 

Brain mapping involves the study of brain 
structure and function using imaging and 
computational techniques. Understanding the 
brain’s architecture is crucial for diagnosing 
neurological diseases, developing 
neuroethologies, and advancing our knowledge 
of cognition. Traditional brain mapping relied 
heavily on manual analysis and interpretation, 
which are labour-intensive and prone to 
variability. The emergence of AI has 
revolutionized this field, offering automated, 
scalable, and highly accurate methods for 
analysing vast amounts of neuroimaging data. 
This paper surveys the role of AI in brain 
mapping, focusing on the techniques employed, 
imaging data used, and practical applications in 
neuroscience and medicine. We aim to provide 
researchers and practitioners with a 
consolidated view of current methodologies and 
inspire further advancements. 

Background and Motivation: Brain mapping 
refers to techniques used to study the structure 
and function of the brain using imaging 
technologies. The goal is to produce detailed 
maps that represent various aspects such as 
anatomical connectivity (structural 
connectomics), functional connectivity 
(functional connectomics), and cognitive 
processes. The increasing availability of brain 
imaging datasets such as the Human Connectome 
Project (HCP), Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), and UK Biobank 
has encouraged the use of AI to handle complex 
analyses. AI algorithms, particularly 
Convolutional Neural Networks (CNNs) and 
Graph Neural Networks (GNNs), have proven 
effective in pattern recognition, classification of 
brain disorders, and predictive modeling. 
 
Literature Survey 
Recent years have witnessed a surge in research 
integrating AI with brain mapping. Notable 
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works include the application of CNNs to MRI 
data for brain tumor classification (Pereira et al., 
2016), and DL frameworks for Alzheimer’s 
diagnosis using PET and MRI (Liu et al., 2018). 
Studies by Heinsfeld et al. (2018) demonstrated 
the utility of autoencoders for ASD classification 
using fMRI. Graph neural networks, as explored 
by Ktena et al. (2017), enabled modeling of 
structural connectomes in a disease diagnosis 
context. Multimodal learning has also gained 
attention. Suk et al. (2014) proposed a deep 
learning-based method combining PET and MRI 
for early Alzheimer’s detection. Meanwhile, Roy 
et al. (2019) implemented a GAN-based approach 
to synthesize missing imaging modalities, 
enhancing data availability. 
Emerging work on explainable AI (XAI) in 
neuroimaging, such as the interpretable 
classification of schizophrenia via CNNs (Oh et al., 
2019), addresses the black-box limitation of DL. 
Furthermore, federated learning initiatives 
(Sheller et al., 2020) have shown promise in 
training AI models on decentralized brain 
imaging data, preserving patient privacy. 
Overall, the literature underscores the diverse AI 
models employed, the importance of multimodal 
data, and growing emphasis on model 
transparency and data ethics. 
The intersection of neuroscience and artificial 
intelligence (AI) has catalyzed groundbreaking 
advances in brain mapping, enabling researchers 
to decode the complex structure and function of 
the human brain. This section surveys the key 
literature across traditional and AI-augmented 
brain mapping methodologies, including imaging 
modalities, machine learning (ML) algorithms, 
and deep learning (DL) architectures. 

 
Traditional Brain Mapping Techniques 
Historically, brain mapping has relied heavily on 
neuroimaging technologies such as functional 
magnetic resonance imaging (fMRI), 
electroencephalography (EEG), 
magnetoencephalography (MEG), and positron 
emission tomography (PET). These modalities 
have provided foundational insights into neural 
activity, connectivity, and brain-behavior 
relationships. Seminal studies by Ogawa et al. 
(1990) on the blood-oxygen-level-dependent 
(BOLD) signal in fMRI laid the groundwork for 
functional connectivity analyses. Similarly, EEG 
studies (e.g., Niedermeyer and da Silva, 2005) 
have been instrumental in tracking real-time 
electrical activity. 
While these methods offer rich data, their 
complexity and volume demand advanced 
computational tools to interpret patterns that are 
not readily observable through classical 
statistical techniques. 

Emergence of AI in Brain Mapping 
The application of AI has transformed the field of 
brain mapping, allowing for more accurate, 
scalable, and automated analyses of 
neuroimaging data. Machine learning methods, 
such as support vector machines (SVM), random 
forests, and k-nearest neighbors (k-NN), were 
among the first to be applied for tasks such as 
brain region segmentation, disease classification, 
and pattern recognition. 
For instance, Pereira et al. (2009) demonstrated 
the effectiveness of SVMs in decoding cognitive 
states from fMRI data. Similarly, Zhang et al. 
(2011) applied ensemble ML techniques to 
distinguish Alzheimer’s patients from healthy 
controls using structural MRI features. 
 
Deep Learning for Structural and Functional 
Mapping 
Recent advances in deep learning have 
significantly enhanced brain mapping 
capabilities. Convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) 
have been widely adopted for spatial and 
temporal brain data analysis, respectively. 
CNNs have proven especially effective in 
segmentation tasks, such as automated 
delineation of brain regions from MRI scans. U-
Net architectures (Ronneberger et al., 2015) have 
become a standard baseline for medical image 
segmentation. 3D-CNNs further extended these 
capabilities to volumetric data, improving 
accuracy in anatomical structure recognition 
(Çiçek et al., 2016). 
For functional mapping, RNNs and attention-
based models have been used to model time-
series data from EEG and fMRI. Notably, the work 
of Bashivan et al. (2015) on deep recurrent-
convolutional networks for EEG classification has 
shown promising results in decoding cognitive 
states and neurological conditions. 

 
Hybrid Models and Multimodal Learning 
Hybrid AI models that combine different types of 
neural networks or integrate multiple modalities 
(e.g., combining fMRI with EEG) are gaining 
traction. These models leverage the strengths of 
each modality—such as the spatial resolution of 
fMRI and the temporal resolution of EEG—to 
create a more comprehensive map of brain 
activity. 
Recent works have explored Graph Neural 
Networks (GNNs) for modeling brain 
connectivity patterns, as they naturally represent 
the brain as a network of interacting regions 
(Ktena et al., 2018). Transformer-based models 
are also emerging in the domain, offering 
potential improvements in modeling long-range 
dependencies across neural data streams. 
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Clinical and Cognitive Applications 
AI-powered brain mapping techniques have 
demonstrated significant potential in clinical 
applications such as early diagnosis of 
neurological disorders (e.g., Alzheimer’s, 
Parkinson’s, epilepsy), prognosis prediction, and 
treatment planning. Deep learning models have 
outperformed traditional methods in 
distinguishing between disease stages and in 
identifying subtle biomarkers from complex 
imaging data. 
Moreover, cognitive neuroscience applications—
such as decoding visual perception, language 
comprehension, and decision-making 
processes—have also benefited from AI. Studies 
by Huth et al. (2016) and others have 
reconstructed semantic representations of 
language processing using AI algorithms trained 
on fMRI data. 
 
Methodology 
Problem Statement: The human brain is an 
intricate organ characterized by complex, high-
dimensional, and multi-modal data generated 
through neuroimaging technologies. Traditional 
analytical methods face limitations in capturing 
non-linear relationships, extracting latent 
features, and integrating heterogeneous data. 
Therefore, there is a growing need for intelligent 
computational frameworks capable of 
effectively mapping structural and functional 
brain activity.The central problem addressed in 
this work is to systematically survey, analyze, 
and evaluate the current state-of-the-art 
artificial intelligence (AI) techniques that 
contribute to brain mapping, emphasizing both 
methodological advances and practical 
applications. This includes identifying suitable 
AI models for specific neuroimaging tasks and 
highlighting their strengths, limitations, and 
real-world impact. 
 
System Architecture: The system architecture 
of AI-powered brain mapping solutions can be 
generally divided into the following modular 
components (see Figure 1): 
 
A. Data Acquisition 
Neuroimaging data from fMRI, EEG, MEG, PET, or 
DTI is collected from open-access databases 
such as Human Connectome Project (HCP), ADNI, 
or custom clinical studies. 
 
B. Preprocessing 

 Standard preprocessing pipelines 
involve: 

 Noise/artifact removal (e.g., ICA for 
EEG) 

 

 Motion correction and spatial 
normalization (e.g., SPM, FSL for 
fMRI) 

 Channel and frequency filtering for 
EEG/MEG 

 Skull stripping and registration for 
MRI 

 
C. Feature Extraction 

 Spatial features: cortical thickness, 
volume, activation maps 

 Temporal features: frequency bands, 
signal power, BOLD signal 
fluctuations 

 Graph features: node degree, path 
length, connectivity matrices 

 
D. AI Model Integration 

 Models are chosen based on task 
requirements: 

 CNNs: Spatial mapping (e.g., brain 
region segmentation) 

 RNNs/Transformers: Temporal 
dynamics (e.g., EEG/fMRI time-series 
classification) 

 GNNs: Brain connectivity and graph-
based representations 

 Hybrid/Multimodal Models: Combine 
spatial-temporal and cross-modality 
data 

 
E. Interpretation and Visualization 
 Techniques such as saliency maps, 

Grad-CAM, attention scores, and t-SNE 
embeddings are used to interpret 
learned representations and enhance 
neuroscientific insights. 
 

       +------------------+ 
       |  Data Acquisition | 
       +------------------+ 
                ↓ 
       +------------------+ 
       | Preprocessing     | ←–– Artifact removal, 

normalization 
       +------------------+ 
                ↓ 
       +------------------+ 
       | Feature Extraction| ←–– Statistical, spatial, or 

spectral features 
       +------------------+ 
                ↓ 
       +------------------+ 
       |  AI Model Layer   | ←–– ML/DL models: CNNs, RNNs, 

GNNs, Transformers 
       +------------------+ 
                ↓ 
       +------------------+ 
       |  Interpretation & | 
       |     Visualization | 

       +------------------+ 
Figure 1: Generalized System Architecture for AI-

based Brain Mapping 
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Experimental results 
As this paper is a survey, we conducted a meta-
analysis of benchmarking studies across key 
datasets. Table 1 summarizes performance 

metrics of various AI models applied to 
representative brain mapping tasks. 
 
 

 

Study/Method Modality Task Model Type 
Accuracy / 

AUC 
Dataset 

Bashivan et al. 
(2015) 

EEG 
Mental state 
classification 

CNN + RNN 89.2% 
BCI 
Competition 

Suk et al. (2014) 
MRI + 
PET 

Alzheimer’s diagnosis 
Deep Boltzmann 
Machine 

95.2% AUC ADNI 

Vieira et al. (2017) fMRI Brain region decoding SVM 81.6% HCP 

Ktena et al. (2018) fMRI 
Connectome 
classification 

GNN 85.0% ABIDE 

Huth et al. (2016) fMRI 
Semantic brain 
mapping 

Word2Vec + LSTM — Custom 

Table 1: Summary of AI Techniques and Performance in Brain Mapping Tasks 
 

Conclusion 
AI has become an indispensable tool in brain 
mapping, transforming how we study the brain's 
structure and function. This survey has reviewed 
the major imaging modalities, computational 
techniques, and practical applications of AI in 
brain mapping. By overcoming existing 
challenges and embracing emerging technologies, 
AI-driven brain mapping will continue to unlock 
new frontiers in neuroscience, medicine, and 
human cognition research. 
 
Future Scope 

 Future research will likely focus on:  
 Multimodal Integration: Combining 

structural, functional, and molecular 
data for comprehensive brain mapping. 

 Explainable AI (XAI): Enhancing 
interpretability of models to build 
clinician trust.  

 Federated Learning: Enabling 
collaborative AI training without data 
sharing to preserve privacy. 

 Digital Brain Twins: Creating 
personalized AI models for disease 
modelling and therapy simulation. 

 Neuro-Symbolic Systems: Integrating 
symbolic reasoning with neural learning 
for hybrid intelligence. 
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