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Abstract 
 

This Paper introduces a new way to translate code between 
different programming language using machine learning. 
Traditional tool for this tasks require Complex rule and are often 
hard to use. Our module learns how to translate code on its own, 
without needing any predefined rules or example. It works for 
Languages like C++, Java and Python and produces accurate results 
that are easier to read and understand. This approach makes it 
simpler to converts code between languages, helping Developers 
update or connect different software systems more efficiently.  

 
INTRODUTION 
 Transcompilers, or source-to-source compilers, 
translate code between languages with similar 
abstraction levels, differing from traditional 
compilers that convert high-level code to lower-
level forms like assembly. Initially developed to 
port code between platforms (e.g., Intel 8080 to  
 Intel 8086), they now facilitate converting newer 
languages (e.g., CoffeeScript, TypeScript) into 
widely-used ones (e.g., JavaScript), addressing 
language-specific limitations. They are valuable 
for modernizing legacy codebases (e.g., COBOL to 
Java) and integrating diverse codebases, but 
building them is complex due to differences in 
syntax, APIs and type systems. Recent 
advancements in neural machine translation 
(NMT) suggest potential improvements, as 
demonstrated by TransCoder—a model that uses 
monolingual code from GitHub to translate 
between C++, Java, and Python, achieving high 
accuracy and surpassing traditional methods. 
 
LITERATURE SURVEY 
Generating sequences from structured 
representations of code: Our model represents 

a code snippet as the set of compositional paths 
in its abstract syntax tree (AST) and uses 
attention to select the relevant paths while 
decoding. We demonstrate the effectiveness of 
our approach for two tasks, two programming 
languages, and four datasets of up to 16M 
examples. Our model significantly outperforms 
previous models that were specifically designed 
for programming languages, as well as state-of-
the-art NMT models.[1]  
 
Structural Language- models of code: 
generating a missing piece of source code in a 
given program without any restriction on the 
vocabulary or structure. We introduce a new 
approach to any-code completion that leverages 
the strict syntax of programming languages to 
model a code snippet as a tree - structural 
language modeling (SLM). SLM estimates the 
probability of the program's abstract syntax tree 
(AST) by decomposing it into a product of 
conditional probabilities over its nodes. We 
present a neural model that computes these 
conditional probabilities by considering all AST 
paths leading to a target node. Unlike previous 
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techniques that have severely restricted the kinds 
of expressions that can be generated in this task, 
our approach can generate arbitrary code in any 
programming language.[2]  
 
A Survey On Creating Digital Health 
Ecosystem with Lifewellness Portal Including 
Hospital and Insurance Company with Cloud 
Computing and Artificial Intelligence: 
Nowadays, the development of e-health concept 
is offering various aspects. In this paper, we 
present a novel website portal with the help of 
cloud computing. Manage all medical data 
through cloud server. This website offers the 
ergonomic and multi-functions opportunity for 
an intelligent hospital and insurance company 
also, based on medical history, through the portal 
maintain the patient’s records, real time 
treatment monitoring through this portal and for 
insurance claim to reimbursed for the cost of 
their medical treatment. Also with the help of AI 
(virtual) assist can help healthcare providers 
with a variety of tasks, such as reviewing patient 
documents, medical notes.[3] 
 
Unsupervised statistical machine translation: 
This paper, we propose an alternative approach 
based on phrase-based Statistical Machine 
Translation (SMT) that significantly closes the 
gap with supervised systems. Our method profits 
from the modular architecture of SMT: we first 
induce a phrase table from monolingual corpora 
through cross-lingual embedding mappings, 
combine it with an n-gram language model, and 
fine-tune hyperparameters through an 
unsupervised MERT variant. In addition, iterative 
backtranslation improves results further, 
yielding, for instance, 14.08 and 26.22 BLEU 
points in WMT 2014 English-German and 
English-French, respectively, an improvement of 
more than 7-10 BLEU points over previous 
unsupervised systems, and closing the gap with 
supervised SMT (Moses trained on Europarl) 
down to 2-5 BLEU points.[4]  
 
Sequencer: Sequence-to-sequence learning 
for end-to-end program repair: This paper 
presents a novel end-to-end approach to program 
repair based on sequence-to-sequence learning. 
We devise, implement, and evaluate a system, 
called SequenceR, for fixing bugs based on 
sequence-to-sequence learning on source code. 
This approach uses the copy mechanism to 
overcome the unlimited vocabulary problem that 
occurs with big code. Our system is data-driven; 
we train it on 35,578 samples, carefully curated 
from commits to open-source repositories. We 
evaluate it on 4,711 independent real bug fixes, as 
well on the Defects4J benchmark used in program 
repair research. SequenceR is able to perfectly 

predict the fixed line for 950/4711 testing 
samples, and find correct patches for 14 bugs in 
Defects4J. It captures a wide range of repair 
operators without any domain-specific top-down 
design.[5]  
 
Voice-Enabled Traffic Sign Recognition and 
Alert System using ML: A Review.  
The "Voice-Enabled Traffic Sign Recognition and 
Alert System" is an innovative application of 
machine learning and computer vision 
technologies aimed at enhancing road safety and 
driver awareness. In today's fast-paced world, the 
ability to promptly recognize and respond to 
traffic signs is crucial to prevent accidents and 
promote responsible driving. This project 
introduces a novel system that employs a camera 
installed in a vehicle to capture real-time images 
of the road. These images are then processed 
using advanced computer vision algorithms to 
detect and classify traffic signs. Furthermore, the 
system utilizes natural language processing to 
provide voice alerts to the driver, ensuring that 
they are informed about important traffic signs, 
speed limits, and other crucial information 
without taking their eyes off the road.[6] 
 
Bert: Pre-training of deep bidirectional 
transformers for language understanding: We 
introduce a new language representation model 
called BERT, which stands for Bidirectional 
Encoder Representations from Transformers. 
Unlike recent language representation models, 
BERT is designed to pre-train deep bidirectional 
representations from unlabeled text by jointly 
conditioning on both left and right context in all 
layers. As a result, the pre-trained BERT model 
can be fine-tuned with just one additional output 
layer to create state-of-the-art models for a wide 
range of tasks, such as question answering and 
language inference, without substantial task-
specific architecture modifications.[7]  
 
Codebert: A pre-trained model for 
programming and natural languages: We 
present CodeBERT, a bimodal pre-trained model 
for programming language (PL) and nat-ural 
language (NL). CodeBERT learns general-
purpose representations that support 
downstream NL-PL applications such as natural 
language code search, code documentation 
generation, etc. We develop CodeBERT with 
Transformer-based neural architecture, and train 
it with a hybrid objective function that 
incorporates the pre-training task of replaced 
token detection, which is to detect plausible 
alternatives sampled from generators. This 
enables us to utilize both bimodal data of NL-PL 
pairs and unimodal data, where the former 
provides input tokens for model training while 
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the latter helps to learn better generators. We 
evaluate CodeBERT on two NL-PL applications by 
fine-tuning model parameters. Results show that 
CodeBERT achieves state-of-the-art performance 
on both natural language code search and code 
documentation generation tasks.[8]  
 
Coda: An end-to-end neural program 
decompiler: we propose Coda1 , the first end-to-
end neural-based framework for code 
decompilation. Coda decomposes the 
decompilation task into of two key phases: First, 
Coda employs an instruction type-aware encoder 
and a tree decoder for generating an abstract 
syntax tree (AST) with attention feeding during 
the code sketch generation stage. Second, Coda 
then updates the code sketch using an iterative 
error correction machine guided by an 
ensembled neural error predictor. By finding a 
good approximate candidate and then fixing it 
towards perfect, Coda achieves superior 
performance compared to baseline approaches. 
We assess Coda’s performance with extensive 
experiments on various benchmarks. Evaluation 
results show that Coda achieves an average of 
82% program recovery accuracy on unseen 
binary samples, where the state-of-the-art 
decompilers yield 0% accuracy. Furthermore, 
Coda outperforms the sequence-to-sequence 
model with attention by a margin of 70% 
program accuracy. Our work reveals the 
vulnerability of binary executables and imposes a 
new threat to the protection of Intellectual 
Property (IP) for software development.[9]  
 
A Survey on Revolutionizing Document 
Security: A Comprehensive Deep Learning 
Approach For Signature Detection and 
Verification :In today's fast-paced business 
environment, automating signature verification 
is essential for efficiency. This project employs 
cutting-edge deep learning techniques: YOLOv5 
for signature detection, CycleGAN for noise 
reduction, and VGG16-based feature extraction 
for verification. The workflow consists of three 
phases: signature detection, noise removal, and 
verification using cosine similarity with a 
threshold of 0.8. This interdisciplinary approach 
enhances operational efficiency and accuracy in 
document management and authentication, 
making it valuable for businesses.[10]  
 
Two new evaluation datasets for low-resource 
machine translation: Nepali-english and 
sinhala-english: In this work, we take sentences 
from Wikipedia pages and introduce new 
evaluation datasets in two very low resource 
language pairs, Nepali-English and Sinhala-
English. These are languages with very different 
morphology and syntax, for which little out-of-

domain parallel data is available and for which 
relatively large amounts of monolingual data are 
freely available. We describe our process to 
collect and cross-check the quality of 
translations, and we report baseline performance 
using several learning settings: fully supervised, 
weakly supervised, semi-supervised, and fully 
unsupervised. Our experiments demonstrate that 
current state-of-the-art methods perform rather 
poorly on this benchmark, posing a challenge to 
the research community working on low 
resource MT.[11] 
 
Deep code comment generation: This paper 
proposes a new approach named DeepCom to 
automatically generate code comments for Java 
methods. The generated comments aim to help 
developers understand the functionality of Java 
methods. DeepCom applies Natural Language 
Processing (NLP) techniques to learn from a large 
code corpus and generates comments from 
learned features. We use a deep neural network 
that analyzes structural information of Java 
methods for better comments generation. We 
conduct experiments on a large-scale Java corpus 
built from 9,714 open source projects from 
GitHub. We evaluate the experimental results on 
a machine translation metric. Experimental 
results demonstrate that our method DeepCom 
outperforms th 
 
Towards neural decompilation: Present a novel 
approach to decompilation based on neural 
machine translation. The main idea is to 
automatically learn a decompiler from a given 
compiler. Given a compiler from a source 
language S to a target language T, our approach 
automatically trains a decompiler that can 
translate (decompile) T back to S. We used our 
framework to decompile both LLVM IR and x86 
assembly to C code with high success rates. Using 
our LLVM and x86 instantiations, we were able to 
successfully decompile over 97% and 88% of our 
benchmarks respectively.[13]  
 
LIMITATIONS OF EXISTING WORK 
• Rule-Based and Complex: They rely on 

manually created rules to translate code, 
which makes them difficult to build and 
maintain.  

• Hard to Understand: The translated code is 
often messy, hard to read, and usually 
requires a lot of manual corrections. 

• Requires Expert Knowledge: Creating and 
updating these systems needs experts who 
understand both programming languages 
deeply.  

• Limited to Specific Languages: They 
usually work well only for a few language 
pairs and struggle with others.  
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• High Cost and Time-Consuming: Because 
of all the manual effort and expertise needed, 
these systems can be expensive and slow to 
developer.  

 
PROBLEM STATEMENT 
The goal of this paper is to develop a 
programming language translator that leverages 
machine learning models to automatically 
convert source code written in one programming 
language into semantically equivalent code in 
another language. The translator should maintain 
the logic, structure, and functionality of the code 
across different languages, and handle various 
programming paradigms, syntax differences, and 
library dependencies. 
 
PROPOSED SYSTEM 
The proposed system for a Programming 
Language Translator using Machine Learning 
aims to automate the translation of code from one 
programming language to another, leveraging the 
power of machine learning (ML) techniques. This 
system is intended to serve both educational and 
practical purposes, allowing users to translate 
code snippets, understand programming 
concepts across languages, and assist in 
migrating codebases between languages. 
• Machine Learning Model: 
The heart of the system will be an ML-based 
model trained on large parallel corpora of code in 
multiple programming languages. The model will 
learn the syntactical and semantic mappings 
between different programming languages. 
• Preprocessing and Representation: 
Abstract Syntax Tree (AST) parsing will be used 
to represent the structure of code in a more 
language-agnostic manner. This allows the model 
to understand code logic and structure, 
independent of language-specific syntax. 
• Translation Pipeline: 
The user will input code in one language (e.g., 
Python), and specify the target language (e.g., 
Java). 
The system will process the input code, 
generating an AST and using the trained model to 
translate the code to the target language while 
maintaining functionality. 
• Context-Aware Translation: 
The system will incorporate context-awareness 
to handle different translation scenarios. For 
example, if the model encounters language-
specific constructs (e.g., Python's list 
comprehension), it will look for an equivalent 
construct in the target language (e.g., a for loop in 
Java) 
 
• Testing and Validation: 
The translated code will undergo automated 
testing to ensure that it preserves the 

functionality of the original code. This could 
include unit tests or functional tests. 
 
SYSTEM REQUIREMENTS 
Software Requirements  
Operating System-Windows 10/11, Linux 
(Ubuntu,etc.), or macOS  
Programming Language: Python (version 3.7 or 
higher)  
Deep Learning Frameworks- TensorFlow or 
PyTorch  
Natural Language Processing (NLP) Libraries-
NLTK, spaCy  
IDE: Jupyter Notebook or PyCharm.  
Additional Libraries: NumPy, Pandas. 
 
Hardware Requirements: 
Processor (CPU)Intel core i3 or above  
 Memory (RAM) 8 GB and above  
Storage –SSD(500GB) or HDD(1 TB).  
 
METHODOLOGY 

 
Fig 1. Architecture Diagram 

 
Teacher User (A) 
Logs in via the React Frontend (F): 
The teacher logs in to the platform, just as before. 
Uploads Resources (e.g., notes, question 
papers, videos):In addition to uploading 
resources, the teacher can now upload code in 
various programming languages (Python, Java, 
C++, etc.) that they want translated or need to be 
made accessible in different languages. 
 
Defines Translation Tasks:The teacher can 
request the system to translate the code into 
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different programming languages. The system 
might offer an option for teachers to upload 
specific translation tasks, where they specify 
which programming languages should be 
translated into which. 
 
Student User (B) 
Logs in to View and Download Resources: 
Students can access resources uploaded by the 
teacher, as before. 
 
Interacts with AI/Auto-Help Features: 
Students can also use the AI/Auto-Help module 
for additional help, including learning 
programming concepts or translating code 
between languages. 
 
Translation Requests: 
Students can request translation of code snippets 
into different programming languages, and the AI 
module will automatically translate the code 
using machine learning models. 
 
React Frontend (F) 
Single-Page Application (SPA): The SPA 
interface remains the same, but with additional 
features for interacting with the programming 
language translator and AI functionalities. 
 
User Interface for Code Upload and 
Translation:A new interface is provided for 
uploading code snippets and requesting 
translation to other languages. The React 
Frontend will display translation options and 
allow users to input parameters (e.g., which 
language to translate code to). 
 
Communicates with Python Backend (P) via 
RESTful APIs:Frontend sends requests for 
translations and code uploads to the Python 
Backend (P), which processes these tasks 
 
Python Backend (P) 
Handles Business Logic, Authentication, File 
Operations, and Communication with the 
Database: 
As before, the Python Backend will manage 
authentication and handle file uploads. 
 
Machine Learning-Based Language 
Translation: The Python Backend integrates a 
Machine Learning Model that has been trained 
on programming language syntax and patterns. It 
handles translating code from one programming 
language to another. 
 
Database (D) 
Stores User Information, Resource Metadata, 
and Uploaded Files:Database stores user 
profiles (teacher and student data), metadata 

about uploaded code resources, and file contents 
(e.g., text files, code snippets). 
 
Stores Translated Code:The system stores a log 
of all translations performed, including both the 
source and target languages for future reference. 
 
NoSQL or Relational Database:Depending on 
the nature of the data and scale, a NoSQL 
(MongoDB) or relational database may be used. 
NoSQL is ideal for flexible, document-based 
storage (like code and translation logs), while 
relational databases might be used for structured 
data like user profiles and metadata. 
 
AI / Auto-Help Module (AI) 
Provides Advanced Features:The AI/Auto-Help 
module is enhanced to assist with 
Automated Code Translation: The AI module 
could offer code translation suggestions based on 
the context (e.g., language-specific idioms). 
Pattern Recognition: Recognize common 
patterns in code to help translate them 
accurately. 
Chatbot for Code Explanation: The chatbot can 
also help students understand why certain code 
blocks are translated the way they are or suggest 
optimizations for the translated code. 
 

 
Fig 2. Use-case Diagram 

 
RESULT DISCUSSION 
The results of a programming language translator 
using machine learning show both promising 
outcomes and notable challenges. When the 
model is trained on high-quality, diverse datasets, 
it can accurately translate code between 
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commonly used programming languages, 
achieving high correctness in terms of both 
syntax and semantics. However, performance 
tends to decline when translating complex or 
language-specific constructs, as some 
programming languages have unique features—
such as Python's dynamic typing or Java's 
memory management—that don’t easily map to 
others. This can result in the loss of functionality 
or errors in the translated code. While the model 
excels at translating simple constructs like loops 
and conditionals, it struggles with more advanced 
topics like concurrency, multi-threading, or 
language-specific idioms. Additionally, 
maintaining the readability and efficiency of the 
translated code across different languages can be 
difficult, as each language has its own 
conventions and optimizations. The speed of the 
translation also varies, with larger codebases 
taking longer to process. The model's 
generalization across languages depends on the 
variety of training data, which works well for 
widely-used languages but may falter with less 
common ones. Overall, while machine learning-
based programming language translators offer 
significant potential for educational purposes 
and simple code conversion tasks, they still 
require refinement, continuous training, and 
hybrid approaches to handle edge cases and 
ensure production-level accuracy. 
 
RESULTS/OUTPUTS  

 
 

 
 

 
 

 
 

 
 
 

 
 
CONCLUSION 
In this paper, we show that approaches of 
unsupervised machine translation can be applied 
to source code to create a transcompiler in a fully 
unsupervised way. TransCoder can easily be 
generalized to any programming language, does 
not require any expert knowledge, and 
outperforms commercial solutions by a large 
margin. Our results suggest that a lot of mistakes 
made by the model could easily be fixed by adding 
simple constraints to the decoder to ensure that 
the generated functions are syntactically correct, 
or by using dedicated architectures . Leveraging 
the compiler output or other approaches such as 
iterative error correction could also boost the 
performance.  
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