
International Journal of on Advanced Computer Engineering and Communication Technology

© 2025 The Authors. Published by MRI INDIA.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Archives available at journals.mriindia.com

International Journal on Advanced Computer Engineering and
Communication Technology

ISSN: 2278-5140

Volume 14 Issue 01, 2025

Programming Language Translation Using Machine Learning: A
Results-Driven Study

Prof. V. S. Nalawade1, Bhapkar Shital Rajendra2, Raut Krupa Rajesh3, Shaikh Diba Jamil4
1Dean Academics & Head-AI & DS Engg. Dept. S. B. Patil College of Engineering
2,3,4Department of Computer Engineering, Savitribai Phule Pune University
vinaynalawade2007@gmail.com, bhapkarshital2000@gmail.com, kruparaut1546@gmail.com,
shaikhdiba786 @gmail.com

Peer Review Information

Submission: 15 Feb 2025
Revision: 23 March 2025
Acceptance: 27 April 2025

Keywords

Machine Learning
Programming Languages
Data Analysis
Translator

Abstract

This Paper introduces a new way to translate code between
different programming language using machine learning.
Traditional tool for this tasks require Complex rule and are often
hard to use. Our module learns how to translate code on its own,
without needing any predefined rules or example. It works for
Languages like C++, Java and Python and produces accurate results
that are easier to read and understand. This approach makes it
simpler to converts code between languages, helping Developers
update or connect different software systems more efficiently.

INTRODUTION
 Transcompilers, or source-to-source compilers,
translate code between languages with similar
abstraction levels, differing from traditional
compilers that convert high-level code to lower-
level forms like assembly. Initially developed to
port code between platforms (e.g., Intel 8080 to
 Intel 8086), they now facilitate converting newer
languages (e.g., CoffeeScript, TypeScript) into
widely-used ones (e.g., JavaScript), addressing
language-specific limitations. They are valuable
for modernizing legacy codebases (e.g., COBOL to
Java) and integrating diverse codebases, but
building them is complex due to differences in
syntax, APIs and type systems. Recent
advancements in neural machine translation
(NMT) suggest potential improvements, as
demonstrated by TransCoder—a model that uses
monolingual code from GitHub to translate
between C++, Java, and Python, achieving high
accuracy and surpassing traditional methods.

LITERATURE SURVEY
Generating sequences from structured
representations of code: Our model represents

a code snippet as the set of compositional paths
in its abstract syntax tree (AST) and uses
attention to select the relevant paths while
decoding. We demonstrate the effectiveness of
our approach for two tasks, two programming
languages, and four datasets of up to 16M
examples. Our model significantly outperforms
previous models that were specifically designed
for programming languages, as well as state-of-
the-art NMT models.[1]

Structural Language- models of code:
generating a missing piece of source code in a
given program without any restriction on the
vocabulary or structure. We introduce a new
approach to any-code completion that leverages
the strict syntax of programming languages to
model a code snippet as a tree - structural
language modeling (SLM). SLM estimates the
probability of the program's abstract syntax tree
(AST) by decomposing it into a product of
conditional probabilities over its nodes. We
present a neural model that computes these
conditional probabilities by considering all AST
paths leading to a target node. Unlike previous

https://journals.mriindia.com/
mailto:vinaynalawade2007@gmail.com
mailto:kruparaut1546@gmail.com

Programming Language Translation Using Machine Learning: A Results-Driven Study

365

techniques that have severely restricted the kinds
of expressions that can be generated in this task,
our approach can generate arbitrary code in any
programming language.[2]

A Survey On Creating Digital Health
Ecosystem with Lifewellness Portal Including
Hospital and Insurance Company with Cloud
Computing and Artificial Intelligence:
Nowadays, the development of e-health concept
is offering various aspects. In this paper, we
present a novel website portal with the help of
cloud computing. Manage all medical data
through cloud server. This website offers the
ergonomic and multi-functions opportunity for
an intelligent hospital and insurance company
also, based on medical history, through the portal
maintain the patient’s records, real time
treatment monitoring through this portal and for
insurance claim to reimbursed for the cost of
their medical treatment. Also with the help of AI
(virtual) assist can help healthcare providers
with a variety of tasks, such as reviewing patient
documents, medical notes.[3]

Unsupervised statistical machine translation:
This paper, we propose an alternative approach
based on phrase-based Statistical Machine
Translation (SMT) that significantly closes the
gap with supervised systems. Our method profits
from the modular architecture of SMT: we first
induce a phrase table from monolingual corpora
through cross-lingual embedding mappings,
combine it with an n-gram language model, and
fine-tune hyperparameters through an
unsupervised MERT variant. In addition, iterative
backtranslation improves results further,
yielding, for instance, 14.08 and 26.22 BLEU
points in WMT 2014 English-German and
English-French, respectively, an improvement of
more than 7-10 BLEU points over previous
unsupervised systems, and closing the gap with
supervised SMT (Moses trained on Europarl)
down to 2-5 BLEU points.[4]

Sequencer: Sequence-to-sequence learning
for end-to-end program repair: This paper
presents a novel end-to-end approach to program
repair based on sequence-to-sequence learning.
We devise, implement, and evaluate a system,
called SequenceR, for fixing bugs based on
sequence-to-sequence learning on source code.
This approach uses the copy mechanism to
overcome the unlimited vocabulary problem that
occurs with big code. Our system is data-driven;
we train it on 35,578 samples, carefully curated
from commits to open-source repositories. We
evaluate it on 4,711 independent real bug fixes, as
well on the Defects4J benchmark used in program
repair research. SequenceR is able to perfectly

predict the fixed line for 950/4711 testing
samples, and find correct patches for 14 bugs in
Defects4J. It captures a wide range of repair
operators without any domain-specific top-down
design.[5]

Voice-Enabled Traffic Sign Recognition and
Alert System using ML: A Review.
The "Voice-Enabled Traffic Sign Recognition and
Alert System" is an innovative application of
machine learning and computer vision
technologies aimed at enhancing road safety and
driver awareness. In today's fast-paced world, the
ability to promptly recognize and respond to
traffic signs is crucial to prevent accidents and
promote responsible driving. This project
introduces a novel system that employs a camera
installed in a vehicle to capture real-time images
of the road. These images are then processed
using advanced computer vision algorithms to
detect and classify traffic signs. Furthermore, the
system utilizes natural language processing to
provide voice alerts to the driver, ensuring that
they are informed about important traffic signs,
speed limits, and other crucial information
without taking their eyes off the road.[6]

Bert: Pre-training of deep bidirectional
transformers for language understanding: We
introduce a new language representation model
called BERT, which stands for Bidirectional
Encoder Representations from Transformers.
Unlike recent language representation models,
BERT is designed to pre-train deep bidirectional
representations from unlabeled text by jointly
conditioning on both left and right context in all
layers. As a result, the pre-trained BERT model
can be fine-tuned with just one additional output
layer to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.[7]

Codebert: A pre-trained model for
programming and natural languages: We
present CodeBERT, a bimodal pre-trained model
for programming language (PL) and nat-ural
language (NL). CodeBERT learns general-
purpose representations that support
downstream NL-PL applications such as natural
language code search, code documentation
generation, etc. We develop CodeBERT with
Transformer-based neural architecture, and train
it with a hybrid objective function that
incorporates the pre-training task of replaced
token detection, which is to detect plausible
alternatives sampled from generators. This
enables us to utilize both bimodal data of NL-PL
pairs and unimodal data, where the former
provides input tokens for model training while

International Journal on Advanced Computer Engineering and Communication Technology

366

the latter helps to learn better generators. We
evaluate CodeBERT on two NL-PL applications by
fine-tuning model parameters. Results show that
CodeBERT achieves state-of-the-art performance
on both natural language code search and code
documentation generation tasks.[8]

Coda: An end-to-end neural program
decompiler: we propose Coda1 , the first end-to-
end neural-based framework for code
decompilation. Coda decomposes the
decompilation task into of two key phases: First,
Coda employs an instruction type-aware encoder
and a tree decoder for generating an abstract
syntax tree (AST) with attention feeding during
the code sketch generation stage. Second, Coda
then updates the code sketch using an iterative
error correction machine guided by an
ensembled neural error predictor. By finding a
good approximate candidate and then fixing it
towards perfect, Coda achieves superior
performance compared to baseline approaches.
We assess Coda’s performance with extensive
experiments on various benchmarks. Evaluation
results show that Coda achieves an average of
82% program recovery accuracy on unseen
binary samples, where the state-of-the-art
decompilers yield 0% accuracy. Furthermore,
Coda outperforms the sequence-to-sequence
model with attention by a margin of 70%
program accuracy. Our work reveals the
vulnerability of binary executables and imposes a
new threat to the protection of Intellectual
Property (IP) for software development.[9]

A Survey on Revolutionizing Document
Security: A Comprehensive Deep Learning
Approach For Signature Detection and
Verification :In today's fast-paced business
environment, automating signature verification
is essential for efficiency. This project employs
cutting-edge deep learning techniques: YOLOv5
for signature detection, CycleGAN for noise
reduction, and VGG16-based feature extraction
for verification. The workflow consists of three
phases: signature detection, noise removal, and
verification using cosine similarity with a
threshold of 0.8. This interdisciplinary approach
enhances operational efficiency and accuracy in
document management and authentication,
making it valuable for businesses.[10]

Two new evaluation datasets for low-resource
machine translation: Nepali-english and
sinhala-english: In this work, we take sentences
from Wikipedia pages and introduce new
evaluation datasets in two very low resource
language pairs, Nepali-English and Sinhala-
English. These are languages with very different
morphology and syntax, for which little out-of-

domain parallel data is available and for which
relatively large amounts of monolingual data are
freely available. We describe our process to
collect and cross-check the quality of
translations, and we report baseline performance
using several learning settings: fully supervised,
weakly supervised, semi-supervised, and fully
unsupervised. Our experiments demonstrate that
current state-of-the-art methods perform rather
poorly on this benchmark, posing a challenge to
the research community working on low
resource MT.[11]

Deep code comment generation: This paper
proposes a new approach named DeepCom to
automatically generate code comments for Java
methods. The generated comments aim to help
developers understand the functionality of Java
methods. DeepCom applies Natural Language
Processing (NLP) techniques to learn from a large
code corpus and generates comments from
learned features. We use a deep neural network
that analyzes structural information of Java
methods for better comments generation. We
conduct experiments on a large-scale Java corpus
built from 9,714 open source projects from
GitHub. We evaluate the experimental results on
a machine translation metric. Experimental
results demonstrate that our method DeepCom
outperforms th

Towards neural decompilation: Present a novel
approach to decompilation based on neural
machine translation. The main idea is to
automatically learn a decompiler from a given
compiler. Given a compiler from a source
language S to a target language T, our approach
automatically trains a decompiler that can
translate (decompile) T back to S. We used our
framework to decompile both LLVM IR and x86
assembly to C code with high success rates. Using
our LLVM and x86 instantiations, we were able to
successfully decompile over 97% and 88% of our
benchmarks respectively.[13]

LIMITATIONS OF EXISTING WORK
• Rule-Based and Complex: They rely on

manually created rules to translate code,
which makes them difficult to build and
maintain.

• Hard to Understand: The translated code is
often messy, hard to read, and usually
requires a lot of manual corrections.

• Requires Expert Knowledge: Creating and
updating these systems needs experts who
understand both programming languages
deeply.

• Limited to Specific Languages: They
usually work well only for a few language
pairs and struggle with others.

Programming Language Translation Using Machine Learning: A Results-Driven Study

367

• High Cost and Time-Consuming: Because
of all the manual effort and expertise needed,
these systems can be expensive and slow to
developer.

PROBLEM STATEMENT
The goal of this paper is to develop a
programming language translator that leverages
machine learning models to automatically
convert source code written in one programming
language into semantically equivalent code in
another language. The translator should maintain
the logic, structure, and functionality of the code
across different languages, and handle various
programming paradigms, syntax differences, and
library dependencies.

PROPOSED SYSTEM
The proposed system for a Programming
Language Translator using Machine Learning
aims to automate the translation of code from one
programming language to another, leveraging the
power of machine learning (ML) techniques. This
system is intended to serve both educational and
practical purposes, allowing users to translate
code snippets, understand programming
concepts across languages, and assist in
migrating codebases between languages.
• Machine Learning Model:
The heart of the system will be an ML-based
model trained on large parallel corpora of code in
multiple programming languages. The model will
learn the syntactical and semantic mappings
between different programming languages.
• Preprocessing and Representation:
Abstract Syntax Tree (AST) parsing will be used
to represent the structure of code in a more
language-agnostic manner. This allows the model
to understand code logic and structure,
independent of language-specific syntax.
• Translation Pipeline:
The user will input code in one language (e.g.,
Python), and specify the target language (e.g.,
Java).
The system will process the input code,
generating an AST and using the trained model to
translate the code to the target language while
maintaining functionality.
• Context-Aware Translation:
The system will incorporate context-awareness
to handle different translation scenarios. For
example, if the model encounters language-
specific constructs (e.g., Python's list
comprehension), it will look for an equivalent
construct in the target language (e.g., a for loop in
Java)

• Testing and Validation:
The translated code will undergo automated
testing to ensure that it preserves the

functionality of the original code. This could
include unit tests or functional tests.

SYSTEM REQUIREMENTS
Software Requirements
Operating System-Windows 10/11, Linux
(Ubuntu,etc.), or macOS
Programming Language: Python (version 3.7 or
higher)
Deep Learning Frameworks- TensorFlow or
PyTorch
Natural Language Processing (NLP) Libraries-
NLTK, spaCy
IDE: Jupyter Notebook or PyCharm.
Additional Libraries: NumPy, Pandas.

Hardware Requirements:
Processor (CPU)Intel core i3 or above
 Memory (RAM) 8 GB and above
Storage –SSD(500GB) or HDD(1 TB).

METHODOLOGY

Fig 1. Architecture Diagram

Teacher User (A)
Logs in via the React Frontend (F):
The teacher logs in to the platform, just as before.
Uploads Resources (e.g., notes, question
papers, videos):In addition to uploading
resources, the teacher can now upload code in
various programming languages (Python, Java,
C++, etc.) that they want translated or need to be
made accessible in different languages.

Defines Translation Tasks:The teacher can
request the system to translate the code into

International Journal on Advanced Computer Engineering and Communication Technology

368

different programming languages. The system
might offer an option for teachers to upload
specific translation tasks, where they specify
which programming languages should be
translated into which.

Student User (B)
Logs in to View and Download Resources:
Students can access resources uploaded by the
teacher, as before.

Interacts with AI/Auto-Help Features:
Students can also use the AI/Auto-Help module
for additional help, including learning
programming concepts or translating code
between languages.

Translation Requests:
Students can request translation of code snippets
into different programming languages, and the AI
module will automatically translate the code
using machine learning models.

React Frontend (F)
Single-Page Application (SPA): The SPA
interface remains the same, but with additional
features for interacting with the programming
language translator and AI functionalities.

User Interface for Code Upload and
Translation:A new interface is provided for
uploading code snippets and requesting
translation to other languages. The React
Frontend will display translation options and
allow users to input parameters (e.g., which
language to translate code to).

Communicates with Python Backend (P) via
RESTful APIs:Frontend sends requests for
translations and code uploads to the Python
Backend (P), which processes these tasks

Python Backend (P)
Handles Business Logic, Authentication, File
Operations, and Communication with the
Database:
As before, the Python Backend will manage
authentication and handle file uploads.

Machine Learning-Based Language
Translation: The Python Backend integrates a
Machine Learning Model that has been trained
on programming language syntax and patterns. It
handles translating code from one programming
language to another.

Database (D)
Stores User Information, Resource Metadata,
and Uploaded Files:Database stores user
profiles (teacher and student data), metadata

about uploaded code resources, and file contents
(e.g., text files, code snippets).

Stores Translated Code:The system stores a log
of all translations performed, including both the
source and target languages for future reference.

NoSQL or Relational Database:Depending on
the nature of the data and scale, a NoSQL
(MongoDB) or relational database may be used.
NoSQL is ideal for flexible, document-based
storage (like code and translation logs), while
relational databases might be used for structured
data like user profiles and metadata.

AI / Auto-Help Module (AI)
Provides Advanced Features:The AI/Auto-Help
module is enhanced to assist with
Automated Code Translation: The AI module
could offer code translation suggestions based on
the context (e.g., language-specific idioms).
Pattern Recognition: Recognize common
patterns in code to help translate them
accurately.
Chatbot for Code Explanation: The chatbot can
also help students understand why certain code
blocks are translated the way they are or suggest
optimizations for the translated code.

Fig 2. Use-case Diagram

RESULT DISCUSSION
The results of a programming language translator
using machine learning show both promising
outcomes and notable challenges. When the
model is trained on high-quality, diverse datasets,
it can accurately translate code between

Programming Language Translation Using Machine Learning: A Results-Driven Study

369

commonly used programming languages,
achieving high correctness in terms of both
syntax and semantics. However, performance
tends to decline when translating complex or
language-specific constructs, as some
programming languages have unique features—
such as Python's dynamic typing or Java's
memory management—that don’t easily map to
others. This can result in the loss of functionality
or errors in the translated code. While the model
excels at translating simple constructs like loops
and conditionals, it struggles with more advanced
topics like concurrency, multi-threading, or
language-specific idioms. Additionally,
maintaining the readability and efficiency of the
translated code across different languages can be
difficult, as each language has its own
conventions and optimizations. The speed of the
translation also varies, with larger codebases
taking longer to process. The model's
generalization across languages depends on the
variety of training data, which works well for
widely-used languages but may falter with less
common ones. Overall, while machine learning-
based programming language translators offer
significant potential for educational purposes
and simple code conversion tasks, they still
require refinement, continuous training, and
hybrid approaches to handle edge cases and
ensure production-level accuracy.

RESULTS/OUTPUTS

CONCLUSION
In this paper, we show that approaches of
unsupervised machine translation can be applied
to source code to create a transcompiler in a fully
unsupervised way. TransCoder can easily be
generalized to any programming language, does
not require any expert knowledge, and
outperforms commercial solutions by a large
margin. Our results suggest that a lot of mistakes
made by the model could easily be fixed by adding
simple constraints to the decoder to ensure that
the generated functions are syntactically correct,
or by using dedicated architectures . Leveraging
the compiler output or other approaches such as
iterative error correction could also boost the
performance.

International Journal on Advanced Computer Engineering and Communication Technology

370

References
Alon, Uri, et al. "code2seq: Generating sequences
from structured representations of code." arXiv
preprint arXiv:1808.01400 (2018).

Alon, Uri, et al. "Structural language models of
code." International conference on machine
learning. PMLR, 2020.

Nalawade, V. S., Jadhav, O. D., Jadhav, R. M., Kargal,
S. R., & Panhalkar, N. S. (2023). A Survey On
Creating Digital Health Ecosystem with
Lifewellness Portal Including Hospital and
Insurance Company with Cloud Computing and
Artificial Intelligence.

Artetxe, Mikel, Gorka Labaka, and Eneko Agirre.
"Unsupervised statistical machine translation."
arXiv preprint arXiv:1809.01272 (2018).

Kang, Sungmin, and Shin Yoo. "Language models
can prioritize patches for practical program
patching." Proceedings of the Third International
Workshop on Automated Program Repair. 2022.

Nalawade, V. S., Jagtap, T. G., Jamdar, P. B., Kadam,
S. I., & Kenjale, R. S. (2023). Voice-Enabled Traffic
Sign Recognition and Alert System using ML: A
Review.

Devlin, J. "Jacob Devlin, Ming-Wei Chang, Kenton
Lee, Kristina Toutanova: BERT: Pre-training of
Deep Bidirectional Transformers for Language
Understanding. NAACL-HLT (1) 2019: 4171-
4186." Bert: Pre-training of Deep Bidirectional
Transformers for Language Understanding
(2018).

Feng, Zhangyin, et al. "Codebert: A pre-trained
model for programming and natural languages."
arXiv preprint arXiv:2002.08155 (2020).

Fu, Cheng, et al. "Coda: An end-to-end neural
program decompiler." Advances in Neural
Information Processing Systems 32 (2019).

Guzma n, Francisco, et al. "The flores evaluation
datasets for low-resource machine translation:
Nepali-english and sinhala-english." arXiv
preprint arXiv:1902.01382 (2019).

Nalawade, V. S., Aoute, Y. P., Dharurkar, A. S., &
Gunavare, R. D. (2023). A Survey on
Revolutionizing Document Security: A
Comprehensive Deep Learning Approach For
Signature Detection and Verification.

Hu, Xing, et al. "Deep code comment generation."
Proceedings of the 26th conference on program
comprehension. 2018.

Katz, Omer, et al. "Towards neural
decompilation." arXiv preprint arXiv:1905.08325
(2019).

