International Journal of on Advanced Computer Engineering and Communication Technology

—
7l

4|7

Archives available at journals.mriindia.com

International Journal on Advanced Computer Engineering and

Communication Technology

[SSN: 2278-5140
Volume 14 Issue 01, 2025

Impact of Al on Software Development and Testing

Nivedi Sapate 1, Shweta Nirkulwar % Laxmi Gathe3, Sejal Shahu*, Mr. Rupesh. Bangre>
1-5MCA Department Suryodaya College of Engineering & Technology,Nagpur.

sapatenivedita@gmail.com?,

nirkulwarshweta@gmail.com?,

shahusejal75@gmail.com?, rupesh.rpb@gmail.com?®,

Peer Review Information

Submission: 11 Feb 2025
Revision: 20 Mar 2025
Acceptance: 22 April 2025

Keywords

Al

Software Development
Automation

Bug Detection

Code Writing

Abstract

Artificial Intelligence (Al) is changing the way software is developed
and tested. Al tools help developers write code faster, find errors, and
improve software quality. In testing, Al can automatically check for
bugs, suggest fixes, and make sure the software works correctly. These
advancements save time, reduce mistakes, and improve efficiency.
However, there are also challenges, such as the need for skilled
professionals and concerns about data privacy. This paper explores how
Al is used in software development and testing, its benefits, challenges,
and future possibilities. While Al presents numerous benefits,
challenges such as data privacy, bias, and the need for skilled
professionals remain. This study examines current trends, real-world
applications, and future prospects of Al in software development and
testing, providing insights into its transformative potential and

laxmigathe6519@gmail.com?,

associated risks.

INTRODUCTION

Artificial Intelligence (Al) is changing the way
software is developed and tested through
increased efficiency, precision, and automation.
Classical software development involves massive
human intervention in coding, debugging, and
testing, which can be time-consuming and error-
prone. But Al tools are revolutionizing these
processes by automating the code generation,
detecting and correcting bugs, and enhancing
software testing. Artificial intelligence-based tools
like GitHub Copilot, Tabnine, and OpenAl Codex
aid programmers with suggestions for pertinent
code pieces, improved performance, and
minimizing syntax errors. These systems sift
through large databases of information, identify

© 2025 The Authors. Published by MRI INDIA.

patterns, and improve the quality of software with
little manual input, which takes much less time to
develop.

Debugging and detecting bugs have also
undergone remarkable progress with Al-based
tools like DeepCode,Codiga, and SapFix of
Facebook.[1]

These utilities scan source code, forecast possible
vulnerabilities, and recommend repairs,
mitigating the likelihood of security exploits and
application failure. Al can also learn from past
patterns of debugging to spot repeated bugs,
maximizing the efficiency and proactivity of
debugging. In the same manner, Al-based
automated software testing tools like Selenium,
Test.ai, and Applitools automate testing with the

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://journals.mriindia.com/
mailto:sapatenivedita@gmail.com1
mailto:nirkulwarshweta@gmail.com2
mailto:laxmigathe6519@gmail.com3
mailto:shahusejal75@gmail.com4
mailto:rupesh.rpb@gmail.com

Impact of Ai on Software Development and Testing

creation of test cases, Ul inconsistency detection,
and regression test optimization. This enables
ongoing testing, guaranteeing software stability
and performance with reduced manual effort.
Predictive analytics is another significant
contribution of Al to software engineering. Al
models examine past data, defect patterns, and
performance metrics to predict software failures
prior to their occurrence.

By identifying risks ahead of time, developers can
resolve potential problems early in the
development cycle, enhancing software reliability
and user experience. Further, Natural Language
Processing (NLP) also supports requirement
analysis through the process of translating user
needs into organized technical specifications. Al-
based NLP tools inspect project documentation,
create test cases, and flag inconsistencies,
streamlining team collaboration and minimizing
errors. While useful, Al application in software
development also has some drawbacks. Concerns
regarding data privacy and security exist since Al
tools are dependent on large data sets that are
often sensitive. Another concern is bias in Al
models since Al models are trained from past data,
which at times results in unequal or incorrect
forecasts.

Moreover, implementing Al in software
development involves expertise in machine
learning, Al algorithms, and software

development, and this could be a concern for
organizations with limited talent to perform these
activities. Additionally, while AI enhances
efficiency, sole dependence on Al-based decisions
will result in unforeseen errors, and thus human
verification is required to authenticate Al-
produced outputs. The future of Al in software
development is bright, with ongoing
developments in machine learning, deep learning,
and automation. Al is likely to have a greater role
in self-healing software, where it can detect and
repair problems independently in real time. The

combination of Al with DevOps and cloud
computing will further automate software
deployment, monitoring, and maintenance,

making the development process more efficient
and cost-saving. Despite certain challenges, Al
continues to transform software engineering,
making it intelligent, quick, and trustworthy.

292

Smart Development

T

0

A| | Productivity

ﬁ \\\)) -

Fig:1 The impact of Al on software development

\ Project Management

Managementand |
Maintenance

LITERATURE REVIEW

Celia Dolores Benitez and Montes Serrano (2023)
proposed through an analysis of Al's methods,
historical background, and real-world
applications, this study investigates the
tremendous effects of Al on software engineering.
It explores Al-assisted software development
lifecycle, Al-driven project management, and Al in
software testing. It also emphasizes the use of Al
in software measurement, software engineering
procedures generally, and software as medical
devices (SaMD)[1].

Krishiv Garg (2023) examines how artificial
intelligence (Al) affects software development,
looking at the potential and problems the sector
faces. The study explores the ways in which
artificial intelligence (AI) technologies, such
machine learning and natural language
processing, are transforming requirements
engineering, code generation, testing, and
maintenance, among other facets of the software
development lifecycle [1].

METHODOLOGY

Artificial Intelligence (AI) is revolutionizing
software development and testing by automating
tasks, improving accuracy, and enhancing overall
efficiency. To understand Al's impact in this field,
data is collected from various sources, including
scholarly publications, business reports, and real-
world case studies. Research papers and academic
journals provide insights into Al’s theoretical and
practical advancements, while business reports
from industry leaders highlight trends, adoption
rates, and return on investment. Case studies also
demonstrate how businesses effectively
implement Al in software development processes.
Further, surveys and interviews with software
developers, testers, and project managers provide
firsthand experience about the advantages and
challenges in adopting AI[3].

Al-based tools are significantly contributing to
contemporary software engineering. Clever

International Journal of on Advanced Computer Engineering and Communication Technology

testing tools, like Testai and Applitools, make
software testing autonomous, minimizing human
effort and maximizing test coverage. Code
generators such as GitHub Copilot and OpenAl
Codex automate code writing with fewer errors
and at a quicker pace. Concurrently, bug detection
tools that utilize Al, including DeepCode and
Facebook's SapFix, identify and address
vulnerabilities early on in the development
process. Each of these technologies is measured
using important efficiency standards, such as how
much it can speed up development, improve
software quality, and reduce the need for human
intervention. The use of Al greatly enhances
productivity by minimizing coding and testing
time while providing greater accuracy in defect
detection.[3]

To evaluate the strengths and weaknesses of Al,
comparing Al-based software development and
testing with conventional methods is necessary. Al
tools provide greater scalability by automating
big-bang testing and development, while manual
methods involve huge human effort and
resources. Accuracy-wise, Al minimizes human
mistakes but can potentially create false positives
or negatives during testing, requiring ongoing
scrutiny and improvement. Although the
implementation of Al comes at a cost upfront, it
decreases long-term expenditure by minimizing
the need for manual effort in the long run.
Furthermore, Al-driven development maximizes
efficiency by speeding up the software
development process and streamlining debugging
procedures. Yet, there remains a place for
conventional techniques when human experience
and intuition are called upon to address intricate
problems.[4]

APPLICATIONS

Artificial Intelligence (AI) is revolutionizing
software development and testing by way of
numerous automated processes, enhancing
efficiency, accuracy, and overall software quality.
Automated code generation is one of the most
important areas where Al has a prominent role to
play. Al-based tools such as GitHub Copilot and
Tabnine help developers by providing code
suggestions, boilerplate code generation, syntax
error detection, and overall code structure
enhancement. These features cut down
development time and make coding more efficient.
Another significant use is bug detection and
repair, where Al-powered debugging tools like
DeepCode and Codiga scan source code for bugs
and recommend relevant fixes. Machine learning
algorithms predict possible vulnerabilities,

293

enabling developers to fix issues ahead of time
and streamline debugging operations. In the same
vein, automated testing uses Al-powered testing
tools like Selenium, Test.ai, and Applitools to run
test cases automatically. Al enhances test
coverage, finds Ul inconsistencies, and increases
regression testing, lowering the amount of manual
effort to validate software.[4]

Al also plays a role in predictive analytics for
software quality, allowing developers to predict
software failures and performance issues prior to
deployment. Machine learning algorithms
examine historical defects and testing data to
optimize testing strategies and enhance software
reliability. Natural Language Processing (NLP) for
requirement analysis also allows Al to help
translate user requirements into technical
specifications. NLP-based tools scan
documentation, identify key requirements, and
even create test cases automatically, making the
software development lifecycle more efficient [5].

By incorporating Al into software development
and testing across different aspects, organizations
can increase productivity levels, minimize errors,
and streamline the overall software development
process. Although Al-based methodologies offer
several advantages, continuous improvement and
human intervention are necessary to guarantee
the accuracy and reliability of Al-produced
solutions.[6]

FUTURE SCOPE

Fully Automated Software Development: Al
could advance to the point where entire
applications are developed with minimal human
intervention. Al-driven coding assistants may
evolve into autonomous systems that can design,
develop, and maintain software [5].

Enhanced Al-Driven Testing: Al will further
improve automated testing by generating more
efficient test cases, reducing human involvement
in testing processes. Al models could self-adapt to
software changes, making testing faster and more
reliable [5].

Intelligent Bug Prediction and Prevention:
Future Al systems may predict software defects
before they occur, reducing debugging time.
Machine learning algorithms will analyze code
patterns and automatically suggest fixes before
deployment.

Al-Powered Self-Healing Software: Al-enabled
applications will be able to detect issues in real
time and fix them without human intervention.
This will lead to more stable and reliable software
systems, reducing maintenance cost [6].

Impact of Ai on Software Development and Testing

Al-Enhanced Cybersecurity in
Development: Al will play a key role in
identifying and mitigating security vulnerabilities
in software code. Future tools will integrate Al-
driven threat detection to improve software
security.[5]

Al

hd FUTURE

-

Fig2: Al and future of software development

CONCLUSION

Artificial Intelligence (AI) is transforming
software development and testing by enhancing
automation, accuracy, and efficiency. Al-powered
tools help developers write code faster, detect and
fix bugs, and automate software testing. This has
significantly improved the speed and quality of
software development while reducing human
effort and errors.

In conclusion, Al is revolutionizing the way
software is developed and tested. While there are
challenges to overcome, the potential of Al in this
field is Immense, promising a future where
software engineering is faster, smarter, and more
automated than ever before.

However, challenges like Al bias, data privacy
concerns, and the need for skilled professionals
remain. Despite these issues, Al continues to
transform the industry, making software
development faster, smarter, and more
efficient.[6]

294

References

Celia Dolores Benitez1 and Montes
Serrano(2023). The Integration and Impact of
Artificial Intelligence in Software Engineering.
International Journal of Advanced Research in

Science, = Communication and Technology
(IJARSCT) Volume 3, Issue 2.
Krishiv Garg (2023). Impact of Artificial

Intelligence on software development: Challenges
and Opportunities. International Journal of
Software & Hardware Research in Engineering
(IJSHRE) ISSN-2347-4890.

Saeid, H. (2020). Revolutionizing Software
Engineering: Leveraging Al for Enhanced
Development Lifecycle. International Journal of
Innovative Research in Engineering &
Multidisciplinary Physical Sciences, 8(1).

Prajapati, S. Prajapati, B, Vegad, S., & Gohil, G.
(2022). Artificial Intelligence and Software
Engineering: Status, Future Trend, and Its
Interaction. International Journal for Research in
Applied Science and Engineering Technology,
10(3),1411-1417.

Saeid, H. (2021). Al-driven Project Management in
Software Engineering. International Journal of
Scientific Development and Research, 6(1), 299-
308.

Bosch,], & Olsson, H. H. (2019). Towards
continuous validation of Al systems in software
engineering. Journal of Software: Evolution and
Process, 31(12), e2240.

Assessing the Efficiency of Integrating BIM and

Blockchain to Improve Information
Management for Mars Buildings: A SWOT-AHP
Analysis

by Amirhossein Javaherikhah

1,*ORCID,Mercedes Valiente Lopez 10RCID
andHadi

