

Archives available at journals.mriindia.com

International Journal on Advanced Computer Engineering and Communication Technology

ISSN: 2278-5140 Volume 14 Issue 01, 2025

Human Centric Cloud Based Portable ICU for Advance Assistance System

Prof. Pooja Pimpalshende¹, Mr. Aayush Bagde², Mr. Aditya Atkare³, Mr. Aman Parve⁴, Mr. Deepak Khambalkar⁵

¹Assistant Professor, Department of Computer Engineering & SCET Nagpur, Maharashtra, India

Peer Review Information

Submission: 05 Feb 2025 Revision: 17 Mar 2025 Acceptance: 18 April 2025

Keywords

Human-Centric Cloud-Based Portable ICU IoT Real-Time Ambulance Assistance

Abstract

The Human-Centric Cloud-Based Portable ICU system revolutionizes emergency medical care by integrating real-time ambulance assistance with hospital infrastructure using advanced IoT technologies. Portable medical devices equipped with IoT sensors monitor vital health parameters, such as body temperature, heart rate, pulse rate, and SpO2 levels, enabling first responders to assess patient conditions efficiently. A unique patient ID consolidates medical data, ensuring seamless information flow. Collected data is securely transmitted via MQTT and cellular networks to a centralized cloud database, facilitating real-time communication between ambulances and hospitals. Hospitals receive instant notifications about incoming patients, allowing them to assess their capacity and respond accordingly. Real-time analytics enhance decision-making, directing patients to the most suitable healthcare facility without delays. By leveraging IoT and cloud computing, this system establishes a robust communication loop between emergency services and hospitals, significantly reducing response times and optimizing patient transfers. This innovative approach enhances the efficiency of emergency healthcare delivery, ensuring timely and appropriate medical attention in critical situations.

INTRODUCTION

These statistics highlight the critical need for rapid and effective medical response during emergencies. However, the current emergency medical systems often face significant challenges in ensuring timely treatment due to delays in transferring patients from ambulances hospitals. well inefficiencies as as communication and resource allocation [2]. To overcome these barriers and improve the quality of emergency care, human-centric cloud-based portable ICU systems are emerging transformative solutions [1][3].

Cloud-based portable ICU systems are designed to integrate seamlessly with existing hospital infrastructure, providing real-time monitoring and data exchange capabilities that bridge the gap between pre-hospital and in-hospital emergency care [2][3]. These advanced systems enable continuous updates on patients' vital signs and health status during transport, allowing hospitals to prepare more effectively for the patient's arrival. By facilitating immediate readiness, portable ICUs significantly reduce the time lost during the critical transition from the ambulance to the hospital, ensuring that medical

²⁻⁵ UG Student, Department of Computer Engineering & SCET Nagpur, Maharashtra, India

 $^{^1}p impal shende pooja@gmail.com, \\ ^2a ayushbagade 56@gmail.com, \\ ^3a ditya atkare 5@gmail.com, \\$

⁴amanparve566@gmail.com, 5deepakskhambalkar321@gmail.com

teams are equipped to deliver prompt, life-saving interventions upon the patient's arrival [1].

Leveraging Internet of Things (IoT) technologies, cloud-based portable ICU systems enhance the coordination of emergency medical services by delivering accurate and timely information across all healthcare touchpoints [3][9]. The system's ability to synchronize data in real time supports a seamless flow of information from the point of emergency to the hospital, ensuring that all medical personnel involved are informed and ready to act [8]. This continuous data exchange not only optimizes patient care during transport but also enables a more informed and effective treatment approach when the patient reaches the hospital [2][9].

The adoption of such systems goes beyond just addressing delays in medical response; it fosters a more connected and responsive healthcare environment [7]. By minimizing communication gaps and enabling the proactive allocation of resources, cloud-based portable ICU systems contribute to improved patient outcomes [1]. This technology-driven approach ensures that critical conditions are addressed swiftly and effectively, transforming emergency care into a more coordinated and efficient process that can better meet the demands of life-threatening situations [9]. The result is not only a higher likelihood of survival for patients but also an overall enhancement in the quality of emergency medical services [5].

PROBLEM STATEMENT

Delays in patient transfer from ambulances to hospitals significantly impact timely medical interventions, leading to negative patient outcomes. One of the major challenges in emergency medical services is the lack of real-time communication and data sharing between ambulance teams and hospital staff. This disconnect hampers effective coordination and slows down emergency response efforts. Additionally, hospitals face inefficiencies in resource allocation due to the absence of real-time health data, making it difficult to prepare for incoming critical patients. Moreover, the delay in delivering critical care is exacerbated by the lack

of accurate patient condition updates during transport, which compromises the quality of emergency treatment. Another major issue is the absence of continuous health monitoring during patient transport, preventing early detection of potential complications. The inability to integrate advanced monitoring technologies, such as cloud-based systems for real-time data exchange, further limits the efficiency of emergency care. This disconnection in the emergency medical services workflow results in fragmented processes and delayed medical responses, ultimately affecting patient survival rates and recovery outcomes.

OBJECTIVES

To enhance emergency medical services and improve patient outcomes, several key measures need to be implemented. First, reducing delays in patient transfers from ambulances to hospitals is crucial for ensuring faster access to critical care. Enabling real-time communication and data sharing between ambulance teams and hospital staff will facilitate better coordination and preparedness, ultimately improving response efficiency. Additionally, providing hospitals with real-time patient data during transport will enhance resource allocation, ensuring that medical teams are ready for incoming critical cases. Minimizing delays in critical care delivery is another important goal, which can be achieved by allowing hospitals to prepare treatments based on real-time patient information. Continuous monitoring of vital signs and health status during transport is essential to detect complications early and provide timely interventions. Integrating cloud-based technology for seamless data exchange will further enhance the efficiency of emergency medical services by ensuring smooth and information accurate transfer between ambulances and hospitals. Finally, streamlining the emergency medical services workflow by improving coordination between emergency responders and healthcare facilities will create a more efficient system, reducing delays and improving overall patient care.

RELATED WORK/LITERATURE SURVEY

Year	Title	Author(s)	Method	Merits	Demerits
I Cai	Title	Audioi (3)	Methou	Merics	Dements
	A remote	Poncette, A. S.,	Mixed	Improved	Usability
	patient-	Mosch, L. K.,	methods,	usability,	problems often
	monitoring	Stablo, L., et	human-	efficiency, and	neglected in
	system for	al.	centered	effectiveness	early stages of
	intensive care		design (HCD),	of remote	health IT
2022	medicine:		usability	patient	development;
	mixed		testing	monitoring	limited focus on
	methods			systems;	early product

	Human- Centered design and usability evaluation			enhanced ICU work processes	evaluations in hospitals
2022	Real-time privacy- preserving disease diagnosis using ECG signal	Miao, G., Ding, A. A., Wu, S. S.	Theoretical analysis on IoT for emergency healthcare, focusing on data privacy	Reduced response time for emergency medical care; real-time remote monitoring of vital signs; early detection of abnormalities	Requires real-world validation; potential cultural and geographical differences affecting implementation; ongoing cybersecurity challenges
2021	IoT based cloud network for smart healthcare using optimization algorithm	Goyal, A., Kaushik, S., Khan, R.	Optimization algorithms (PSO, ANN, Genetic algorithm	Improved diagnosis precision for neurological conditions; reduced time and increased accuracy in processing EEG signals	High computational complexity; lacks focus on energy-efficient IoT network
2021	Integration of cloud and IoT for smart e- healthcare	Shah, J. L., Bhat, H. F., Khan, A. I.	Cloud IoT integration framework for healthcare	Enhanced remote patient monitoring; seamless data exchange; improved healthcare infrastructure with reduced operational cost	Significant data privacy and security challenges; power limitations of sensor nodes; energy consumption concerns

TABLE I. LITERATURE SURVEY

Poncette et al. (2022) discuss the application of human-centered design (HCD) development of remote patient monitoring systems for intensive care units (ICUs). The study emphasizes the need for continuous monitoring, technological advancements, and user-friendly healthcare solutions. One of the key challenges identified is the reluctance of clinicians to adopt these technologies due to usability issues, which contribute to medical errors. implementing HCD principles, the authors highlight improvements in system usability, efficiency, and effectiveness. They argue that incorporating end-user feedback from the early

stages of development enhances both user satisfaction and overall system safety. The study suggests further research on integrating HCD methodologies earlier in the design process to improve usability and clinical outcomes in digital healthcare solutions (Poncette et al., 2022).

Miao, Ding, and Wu (2022) examine IoT-based frameworks for real-time, privacy-preserving disease diagnosis, with a focus on ECG signal monitoring. The study highlights the role of IoT in improving emergency healthcare response times and patient care, particularly for high-risk individuals. However, the authors stress the

importance of robust security measures to protect patient data and maintain ethical compliance. While IoT offers substantial benefits in emergency medical care, the study suggests that real-world validation and continuous advancements in cybersecurity are crucial. Future research should address cultural and regional barriers while refining privacy protection measures to ensure broader adoption of these technologies (Miao, Ding, & Wu, 2022).

Goyal, Kaushik, and Khan (2021) propose an IoTbased cloud network for smart healthcare, utilizing a Particle Swarm Optimization (PSO) algorithm to enhance data fusion in diagnosing neurological conditions such as epilepsy. The study addresses the increasing demand for healthcare services driven by aging populations and chronic diseases. By refining EEG data processing through PSO, the proposed system achieves greater diagnostic accuracy efficiency compared to conventional Artificial Neural Network (ANN) models. The findings indicate improvements in computational speed and sensitivity for neurological diagnoses. The recommend future research developing energy-efficient IoT-based cloud networks for real-time patient monitoring, focusing on optimizing trade-offs between energy consumption, service quality, and efficiency (Goyal, Kaushik, & Khan, 2021).

Shah, Bhat, and Khan (2021) explore the integration of cloud computing and IoT in healthcare to address challenges posed by an aging population and the rising prevalence of chronic diseases. This combination enables efficient, real-time patient monitoring while helping to lower hospitalization costs. The Cloud-IoT model facilitates seamless data exchange healthcare devices. among significantly enhancing patient care. However, the study underscores the necessity of addressing security vulnerabilities and ensuring the privacy of patient data. The authors propose further research on strengthening the integration of these technologies, with a particular emphasis on algorithms and energy-efficient encryption methods for healthcare applications (Shah, Bhat, & Khan, 2021).

EXPECTED CONCLUSION

The Human-Centric Cloud-Based Portable ICU system is poised to transform emergency healthcare by leveraging IoT and cloud computing for real-time patient monitoring and data management. By enabling seamless communication between ambulances and hospitals, this system significantly improves the speed and efficiency of critical care delivery,

ultimately enhancing patient outcomes. As healthcare systems continue to evolve, the integration of advanced technologies like holds the potential to further refine this system, offering predictive analytics and personalized treatment options. This project not only addresses current challenges in emergency response but also paves the way for future innovations that could reshape how critical care is administered globally. The Human-Centric Cloud-Based Portable ICU system represents a significant advancement in emergency healthcare by leveraging IoT, cloud computing, and realtime analytics. Through continued research and innovation, this system could become a cornerstone of modern emergency medical services.

References

Research and Markets. (2023). *United States Remote Patient Monitoring Market Outlook & Forecasts (2023-2028)*. Key vendors include AMD, GE Healthcare, Koninklijke Philips, Medtronic, ResMed, Teledoc Health, and Verify Health. Retrieved from [link].

Sen, J., & Dasgupta, S. (2023). *Data Privacy Preservation on the Internet of Things: An Introductory Chapter*. IntechOpen. https://doi.org/10.5772/intechopen.111477.

Anyonyi, Y. I., & Katambi, J. (2023). *The Role of AI in IoT Systems: A Semi-Systematic Literature Review* (Dissertation). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-63080.

Lim, S.-J. (2023). AI and IoT-Based Remote Health Monitoring in Smart Cities. International Journal of Intelligent Systems Applications in Engineering, 11(7s), 649–654.

Roy, C. K., & Sadiwala, R. (2023). Developing a Smart Environment for IoT-Based Healthcare Systems.

Qu, Q., Sun, H., & Chen, Y. (2023). *Smart Healthcare Solutions at Home in the Internet of Medical Things (IoMT) Era.* IntechOpen. https://doi.org/10.5772/intechopen.113208.

Fei, Y., Nianqiao, L., Abdullah, M. I., Ahmed, S. S., & Kaoru, H. (2023). Security and Privacy Challenges in Smart Healthcare Systems Using Medical Imaging. Journal of Information Security and Applications, 78, 103621.

Romansky, R. (2023). Protecting User Privacy in the Internet of Things. International Conference on Information Technologies (InfoTech), 1–5. https://doi.org/10.1109/InfoTech58664.2023.1 0266883.

Lahmar, M. A., & Daouadji, F. (2023). *Machine Learning-Based Intrusion Detection for IoMT Systems*. Ingénieur. Retrieved from https://repository.esi-sba.dz/jspui/handle/123456789/418.

Miao, G., Ding, A. A., & Wu, S. S. (2022). *Privacy-Preserving Disease Diagnosis Using Real-Time ECG Signals.* arXiv preprint. https://arxiv.org/abs/2202.03652.

Poncette, A. S., Mosch, L. K., Stablo, L., Spies, C., Schieler, M., Weber-Carstens, S., ... & Balzer, F. (2022). A remote patient-monitoring system for intensive care medicine: mixed methods Human-Centered design and usability evaluation. JMIR Human Factors, 9(1), e30655.

Shah, J. L., Bhat, H. F., & Khan, A. I. (2021). Cloud and IoT Integration for Smart Healthcare

Systems. In Healthcare Paradigms in the Internet of Things Ecosystem (pp. 101–136). Academic Press.

Designing an IoT-Based Smart Monitoring and Emergency Alert System for COVID-19 Patients. (2021). 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 1–5. https://doi.org/10.1109/I2CT51068.2021.9418 078.

Goyal, A., Rathore, L., & Kumar, S. (2021). Addressing the Imbalanced Data Classification Problem Using SMOTE and Extreme Learning Machine. Lecture Notes in Networks and Systems, 204, 31–44.

Kshirsagar, P. R., Akojwar, S. G., & Dhanoriya, R. (2017). Classification of ECG Signals Using Artificial Neural Networks. International Conference on Electrical, Computer, and Communication Technology, 1–4.