
International Journal of on Advanced Computer Engineering and Communication Technology

© 2025 The Authors. Published by MRI INDIA.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Archives available at journals.mriindia.com

International Journal on Advanced Computer Engineering and
Communication Technology

ISSN: 2278-5140

Volume 14 Issue 01, 2025

Machine Learning-Based Framework for Design Pattern Classification
in Object-Oriented Software

Dr.Y.Rokesh1, Challa Pravallika2, Jampani Ashok Kumar3 , Ankam David Emmanuel Paul4

,Kakani Sai Krishna5
Associate Professor ,Department of Computer Science & Engineering ,Chalapathi Institute of Engineering
and Technology, LAM, Guntur, AP, India1

Department of Computer Science and Engineering,Chalapathi Institute of Engineering and Technology, LAM,
Guntur, AP, India 2345

Peer Review Information

Submission: 11 Jan 2025

Revision: 08 Feb 2025

Acceptance: 09 March 2025

Keywords

Design Patterns
Machine Learning
Source Code Analysis
Random Forest
Ontology Ranking
REST API

Abstract

Design patterns serve as reusable solutions to common software
development challenges, enabling better organization, maintainability,
and scalability of code. Despite their advantages, selecting the right
design pattern during development can be a complex and subjective
task, particularly for beginner programmers. This paper introduces an
intelligent approach that utilizes machine learning to automatically
recommend appropriate design patterns based on the structural
characteristics of Java source code.The proposed framework begins by
analyzing Java files to extract key structural features, which are then
encoded into numerical vectors. These vectors capture the essential
aspects of the code design and are used as input to machine learning
algorithms such as Support Vector Machine (SVM), Decision Tree, and
Random Forest. Additionally, an ontology-based similarity ranking
method is employed to enhance the precision of predictions by
measuring the closeness between the input code and existing pattern
examples in the dataset.To make the solution user-friendly and
accessible, the model is deployed as a RESTful API. Users can submit
their source code through a web interface and receive instant feedback
on the most likely design pattern classification, along with model
confidence levels. Experimental evaluations indicate that the Random
Forest model consistently delivers high accuracy in predicting one of
the 13 predefined design patterns, outperforming the other classifiers
tested.This system not only supports developers in making more
informed design decisions but also contributes to the automation of
software architecture practices. The integration of machine learning
with software engineering principles creates a valuable resource for
both academic research and industry application.

INTRODUCTION
1. Background and Motivation
In modern software development, achieving
modularity, scalability, and maintainability is
crucial. As applications become more complex,

developers must rely on proven methodologies
and frameworks to manage the growing
intricacies of software design. Design patterns
are among the most effective tools used to solve
common problems that arise during software

https://journals.mriindia.com/

Machine Learning-Based Framework for Design Pattern Classification in Object-Oriented Software

10

construction. They offer reusable solutions to
recurring design issues, making them an integral
part of robust software architecture.
Originating from the seminal work of the "Gang
of Four" (Gamma et al.), design patterns provide
standardized ways of solving software design
problems through tested and widely accepted
practices. These patterns are not code
implementations, but rather templates that
describe how to structure classes and objects to
achieve specific goals. Despite their utility, the
selection and application of suitable design
patterns often depend on the developer’s
experience, intuition, and familiarity with
architectural concerns.
For novice programmers or even seasoned
developers facing unfamiliar problem domains,
determining the most appropriate design
pattern can be difficult. Incorrect usage or
overlooking an optimal pattern can lead to rigid,
inefficient, and error-prone code. Thus, a tool
that aids in recommending or predicting design
patterns based on the structure of source code
could significantly enhance software
development quality and productivity.

2. Importance of Design Patterns in Software
Engineering
Design patterns simplify communication among
developers by providing a common vocabulary
to discuss software architecture. For example,
saying that a component follows the “Singleton”
or “Observer” pattern immediately conveys the
structure and intent to other developers. These
patterns encourage best practices, reduce
development time, and increase code reliability.
Typically, design patterns are categorized into
three groups:
• Creational Patterns (e.g., Singleton, Factory

Method): Deal with object creation
mechanisms.

• Structural Patterns (e.g., Adapter,
Composite): Focus on class and object
composition.

• Behavioral Patterns (e.g., Observer,
Strategy): Concerned with communication
between objects.

Understanding when and how to apply these
patterns appropriately can enhance the clarity
and performance of software. However,
mastering all patterns and their suitable
application contexts is a daunting task,
especially for beginners.

3. Challenges in Design Pattern Selection
The manual process of selecting a design pattern
is inherently subjective and often lacks a
systematic approach. Developers must consider
multiple factors such as problem context, code

structure, software requirements, and future
maintainability. Moreover, many design
patterns share similar structural features,
making it challenging to differentiate them
solely through manual analysis.
In educational environments, students may
struggle to understand the real-world
applications of these patterns. In industrial
settings, time constraints and large codebases
can hinder pattern discovery, leading to
inconsistent or suboptimal design choices. As a
result, software teams may benefit from tools
that automate the identification and
recommendation of design patterns, especially
during the early stages of development.

4. Machine Learning as a Solution
Recent advancements in machine learning (ML)
and artificial intelligence (AI) have shown
promise in automating complex decision-
making tasks in various domains. In the realm of
software engineering, ML can be leveraged to
analyze large volumes of source code and detect
patterns, bugs, or code smells. When applied to
design pattern prediction, machine learning
models can be trained on labeled datasets to
classify new code based on learned structural
representations.
This paper proposes a machine learning-based
framework that predicts design patterns from
Java source code using structural features. The
system incorporates widely used classification
algorithms such as Random Forest, Support
Vector Machine (SVM), and Decision Tree. These
models are trained to recognize the
characteristics of 13 different design patterns
based on code samples.
In addition, the system introduces an ontology-
based ranking method that enhances
classification by comparing semantic similarities
between test and training samples. This hybrid
approach—combining traditional ML with
ontology ranking—provides more accurate and
context-aware predictions.

5. Problem Statement

Despite the benefits of design patterns,
developers face several challenges:
• Difficulty in identifying the most

appropriate design pattern during
development.

• Lack of tools that integrate structural code
analysis with intelligent pattern suggestion.

• Limited access to systems that support
pattern prediction through user-friendly
interfaces.

Therefore, there is a strong need for an
automated, intelligent system capable of
recommending relevant design patterns based

International Journal of on Advanced Computer Engineering and Communication Technology

11

on the structure and semantics of the input
source code.

6. Objectives of the Study

This research aims to develop a system that
automates the process of design pattern
prediction using machine learning. The key
objectives are:
• To analyze and extract structural features

from Java source code for machine learning
input.

• To train and evaluate various classification
models—SVM, Random Forest, and Decision
Tree—for predicting design patterns.

• To integrate an ontology-based ranking
algorithm to enhance the model’s prediction
accuracy.

• To deploy the trained model as a RESTful
web API that provides real-time pattern
prediction upon code upload.

• To assess the performance of different
models and identify the most efficient one
for practical use.

7. Contributions

This study presents the following
contributions:
• A dataset of Java files labeled with 13 design

patterns used to train and evaluate machine
learning models.

• A preprocessing pipeline that converts
source code into structured numerical
representations.

• Implementation and comparison of three
machine learning models: SVM, Decision
Tree, and Random Forest.

• Integration of an ontology ranking
mechanism to refine prediction outcomes.

• Development of a web-accessible REST API
for real-time pattern prediction from user-
uploaded Java code.

• Experimental validation showing the
superiority of the Random Forest classifier
in prediction tasks.

These contributions aim to support
developers in making faster, more accurate
architectural decisions, thereby improving the
quality and maintainability of software systems.

RELATED WORKS
Over the years, various studies have explored
the automation of design pattern detection and
recommendation in source code. Traditional
approaches have primarily focused on rule-
based or static analysis techniques, while more
recent works have adopted machine learning
and deep learning to improve accuracy and
scalability.

Rule-Based and Static Analysis Approaches:
Early research in this domain relied heavily on
manually defined heuristics and structural
matching rules. Brown et al. [1] introduced a
system that identifies design patterns using
graph-based models, where class relationships
are represented and compared against pattern
templates. Similarly, Prechelt et al. [2] employed
metrics such as class coupling, inheritance
depth, and method count to manually detect
design patterns. However, these approaches are
often rigid and fail to generalize across diverse
codebases or large-scale software systems.

Pattern Mining and Clone Detection:
Some studies attempted to extract patterns by
mining software repositories. Tsantalis et al. [3]
developed algorithms that identify micro-
patterns and code clones that match known
design pattern structures. These methods,
although effective to an extent, struggle with
polymorphic behavior and dynamic pattern
variations.

Ontology-Based Pattern Detection:
A few researchers proposed ontology-driven
methods to improve semantic understanding
during pattern classification. Dong et al. [4] used
ontology graphs to represent relationships
among software entities and match them against
pattern ontologies. This provided a more
contextual approach, yet it lacked adaptability to
unseen or evolving patterns.

Machine Learning and Classification
Techniques:
More recent efforts have embraced machine
learning models for predicting design patterns
from code features. Jobst and Trifu [5] employed
decision trees to classify Java classes into design
pattern categories. Taneja and Sharma [6]
explored support vector machines and logistic
regression, reporting moderate accuracy with
manual feature engineering. While these models
marked progress, they often required extensive
domain knowledge to curate meaningful
features.

Deep Learning for Code Analysis:
Some works, such as those by Allamanis et al.
[7], adopted deep learning techniques like
recurrent neural networks and graph neural
networks to analyze source code as sequences
or graphs. These methods showed promise in
capturing code semantics, but their
computational demands and data requirements
are high. Furthermore, most deep learning

Machine Learning-Based Framework for Design Pattern Classification in Object-Oriented Software

12

models lack explainability, which can hinder
adoption in critical systems.

Gaps in Existing Literature:
Despite notable advancements, several
limitations remain in existing systems:
• Lack of real-time or interactive tools for

developers.
• Limited comparison between multiple

machine learning classifiers.
• Inadequate integration of semantic

similarity through ontology-based ranking.
• Few tools are available as deployable APIs

or services.
This research addresses these limitations by
integrating structural code analysis, supervised
learning, and ontology-based ranking into a
unified system. Unlike prior works, the
proposed system offers a web-accessible REST
API and evaluates multiple classifiers for robust
pattern prediction.

1. Existing System
Several existing systems have been developed to
detect and recommend design patterns in
software source code, primarily using rule-
based or heuristic-driven approaches.
Traditional tools rely on predefined structural
rules and static analysis techniques to match
known patterns within the codebase. These
systems analyze object-oriented relationships
like inheritance, class hierarchies, and method
invocations to detect design patterns. While
they provide a structured way to identify
patterns, they are often rigid, requiring exact
pattern conformance and failing to adapt to
modified or partially implemented patterns.
Some semi-automated systems enhance
detection using software metrics such as
cyclomatic complexity, class coupling, or
cohesion to guide heuristic decisions. In more
recent developments, machine learning
techniques like Support Vector Machines
(SVMs), Decision Trees, and Random Forests
have been introduced for pattern classification,
showing promising results by learning from
labeled datasets. However, these systems often
suffer from limited dataset diversity, lack of
semantic context, and inadequate integration
with developer-friendly interfaces. Moreover,
few of these systems have been deployed as
real-time APIs or services, making them less
practical for real-world use.

1.1 Limitations of Existing Systems
• Dependence on rigid, rule-based logic that

lacks flexibility for pattern variations.
• Inability to understand semantic

relationships between classes and methods.

• Manual feature engineering required for
machine learning models.

• Lack of large, diverse, labeled datasets for
effective model training.

• Limited scalability to large or complex
codebases.

• Absence of real-time prediction interfaces
or user-friendly APIs.

• Poor generalization to dynamically evolving
code structures or custom implementations.

2. Proposed System
The proposed system introduces an intelligent
and flexible approach to design pattern
prediction using machine learning and ontology-
based ranking. Unlike traditional rule-based
tools, this system leverages a set of extracted
software metrics and code features to train
multiple machine learning classifiers, such as
Decision Tree, Random Forest, and Support
Vector Machine (SVM), enabling the system to
identify patterns in a more adaptable and data-
driven manner. The use of an ontology-based
ranking mechanism enhances the semantic
matching of predicted patterns by comparing
structural and conceptual similarities between
the uploaded class and known design patterns.
To ensure usability and accessibility, the system
is deployed as a RESTful API, allowing
developers to interact with it via simple file
uploads and receive real-time predictions along
with the top-ranked matching patterns. The
integration of both syntactic and semantic
analysis, along with machine learning, positions
the proposed system as a practical tool for
modern software developers and researchers.
2.1 Advantages of the Proposed System
• Utilizes multiple machine learning

classifiers for improved prediction accuracy.
• Applies ontology-based ranking to ensure

semantic relevance of suggestions.
• Offers real-time design pattern prediction

through a user-friendly REST API.
• Reduces manual effort in identifying design

patterns from source code.
• Supports flexible and partial pattern

detection, even in modified code.
• Scales effectively across varied project sizes

and code complexities.
• Facilitates deployment in real-world

environments for educational or industrial
use.

PROPOSED METHODOLOGY
The proposed methodology is designed to
automate the process of detecting design
patterns in source code using a hybrid approach
that integrates machine learning classifiers and

International Journal of on Advanced Computer Engineering and Communication Technology

13

semantic similarity analysis. The methodology
consists of several key stages, from code
preprocessing to final pattern recommendation,
ensuring both structural and contextual
accuracy in predictions.

1. Dataset Collection and Preprocessing
The system begins by collecting a labeled
dataset of Java class files that represent different
design patterns. These source files are
preprocessed to extract relevant features,
including class names, inheritance trees, method
declarations, variable counts, object creation
instances, and inter-class relationships. The
extracted data is then transformed into
numerical representations suitable for training
machine learning models.

2. Feature Engineering
From each class file, specific software metrics
are calculated, such as the number of methods,
attributes, coupling between classes, cohesion,
depth of inheritance, and class size. These
features are used to build a feature vector that
serves as input for training various classifiers.
This stage is crucial for enabling the model to
distinguish among different patterns based on
structural characteristics.

3. Machine Learning Model Training
Multiple supervised learning algorithms—such
as Decision Tree, Random Forest, and Support
Vector Machine (SVM)—are trained on the
feature vectors. Each classifier learns to
associate a specific combination of features with
a corresponding design pattern. The model is
validated using performance metrics such as
accuracy, precision, recall, and F1-score to
ensure robustness and generalizability.

4. Pattern Prediction
Once the model is trained, users can upload a
Java class file through the REST API interface.
The uploaded file undergoes the same
preprocessing and feature extraction pipeline.
The trained model then predicts the most likely
design pattern based on the learned features.

5. Ontology-Based Ranking
To improve the relevance and confidence of
predictions, an ontology-based ranking
mechanism is applied. It compares the predicted
class against a knowledge base of design
patterns using semantic similarity measures.
This allows the system to refine its suggestions,
accounting for contextual and conceptual
similarities beyond just structural features.

6. RESTful API Deployment

The system is deployed as a REST API that
allows users to upload source code, receive
predictions, and view the top ranked design
patterns. The backend is implemented using
Flask/Django, and the machine learning models
are integrated using libraries like Scikit-learn.
The API ensures seamless integration with
external applications and can be accessed via
simple HTTP requests.

RESULTS
The proposed system for design pattern
prediction was rigorously tested using a
structured Java dataset encompassing multiple
well-known design patterns. A comprehensive
set of experiments was conducted to evaluate
the effectiveness of the machine learning models
and the ontology-based ranking mechanism. The
system was deployed via a RESTful API, offering
a user-friendly interface for uploading source
code and receiving predictions.

1. Dataset Processing and Vectorization
The dataset containing Java source files
corresponding to 13 different design patterns
was loaded into the system through the
interface. The class files were preprocessed to
extract feature vectors by converting the code
into a structured numerical format. This
transformation facilitated compatibility with
machine learning classifiers. The successful
vectorization process was confirmed through
system-generated logs and user interface
outputs.

2. Model Training and Performance
Three different classifiers—Decision Tree,
Support Vector Machine (SVM), and Random
Forest—were trained using an 80:20 train-test
split. The following performance metrics were
computed:

Table I: Performance Comparison of ML

Classifiers
Classifier Accuracy Precision Recall F1-

Score
Decision
Tree

85.7% 84.9% 85.3% 85.1%

Random
Forest

91.2% 90.8% 91.5% 91.1%

SVM 88.4% 87.9% 88.2% 88.0%

Among the three, the Random Forest classifier
demonstrated superior accuracy and robustness
in predicting the correct design patterns.

3. Ontology-Based Pattern Ranking
The ontology-based ranking mechanism played
a crucial role in improving prediction reliability.

Machine Learning-Based Framework for Design Pattern Classification in Object-Oriented Software

14

For each uploaded source code, the predicted
pattern was semantically compared against
known patterns, and a ranked list of top 3
matches was generated. In more than 93% of
test cases, the correct design pattern appeared
in the top 3, validating the semantic enrichment
of results.

Table II: Ontology-Based Ranking Accuracy
Rank Position Success Rate (%)
Top 1 88.5%
Top 2 91.7%
Top 3 93.2%

The integration of ontology significantly
improved prediction confidence and
interpretability.

4. Real-Time API Output Screens
The deployed API allowed users to interact with
the system by uploading Java class files. The
prediction results, along with ranking scores
and performance metrics, were displayed on the
user interface. Sample output screens included:

Table III: Identification of Abstract Factory Pattern in jbehave-core Project

These output screens demonstrate the system’s
practical usability and real-time performance,
with prediction times consistently under 2
seconds.

CONCLUSION
In this study, an intelligent system was
developed to automatically detect and classify
software design patterns from Java source code
using a combination of machine learning and
ontology-based semantic analysis. The proposed
model demonstrated strong performance across
key metrics such as accuracy, precision, recall,
and F1-score, with the Random Forest classifier
emerging as the most effective algorithm. The
integration of an ontology module further
enhanced prediction interpretability by
providing ranked semantic outputs.The system
was also equipped with a user-friendly interface
for dataset processing, model training, and real-
time prediction visualization, making it practical
for use in software engineering workflows.
Evaluations on open-source projects like
jbehave-core showed that the system could
reliably identify complex patterns such as
Abstract Factory across multiple class files,
validating its real-world applicability.
The findings confirm that automating design
pattern detection not only accelerates software
analysis but also contributes to better software
reuse and architecture understanding. The
developed framework lays a solid foundation for
further advancements in intelligent code
analysis and pattern-aware software
development tools.

The current system can be extended by
incorporating additional design patterns,
including behavioral and concurrent types, to
improve coverage. Future work may also
explore deep learning models such as graph
neural networks for better context
understanding. Integrating the tool with popular
IDEs can enable real-time pattern detection
during development. Additionally, a user
feedback mechanism could help improve
prediction accuracy through continuous
learning.

References
E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou,
“JDeodorant: Identification and removal of type-
checking bad smells,” in Proc. IEEE Int. Conf.
Software Maintenance, 2008, pp. 329–338.

M. Fokaefs and E. Stroulia, “Component
detection through pattern matching,” in Proc.
IEEE Int. Conf. Software Maintenance, 2010, pp.
93–102.

D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe,
“Automatic design pattern detection,” in Proc.
11th Int. Workshop Program Comprehension,
2003, pp. 94–103.

S. W. Jin, J. S. Kim, and D. H. Bae, “Automatic
identification of design pattern instances in Java

International Journal of on Advanced Computer Engineering and Communication Technology

15

source code,” in IEICE Transactions on
Information and Systems, vol. E90-D, no. 7, pp.
1136–1144, 2007.

M. Alshayeb and W. Li, “An automatic approach
to detect design patterns,” in Information and
Software Technology, vol. 49, no. 12, pp. 1276–
1291, 2007.

K. R. Dit, M. Revelle, and D. Poshyvanyk,
“Feature location in source code: A taxonomy
and survey,” Journal of Software: Evolution and
Process, vol. 25, no. 1, pp. 53–95, 2013.

J. Hannemann and G. Kiczales, “Design pattern
implementation in Java and AspectJ,” in Proc.
17th ACM Conf. Object-Oriented Programming,
Systems, Languages, and Applications
(OOPSLA), 2002, pp. 161–173.

G. Dong and J. Sun, “Ontology-based semantic
similarity measurement for software design
patterns,” in Proc. Int. Conf. Computer Science
and Software Engineering, 2008, pp. 178–181.

T. Koschke, “Atomic architectural component
recovery for program understanding and
evolution,” in Proc. 20th IEEE Int. Conf. Software
Maintenance, 2004, pp. 478–481.

A. Gupta, S. S. Sahu, and R. K. Tripathi, “Software
design pattern detection using semantic and
structural features,” in Proc. IEEE Int. Conf.
Computational Intelligence and Computing
Research, 2014, pp. 1–6.

P. Tonella and G. Antoniol, “Object oriented
design pattern inference,” in Proc. IEEE Int. Conf.
Software Maintenance, 1999, pp. 230–238.

R. C. Martin, Clean Architecture: A Craftsman's
Guide to Software Structure and Design.
Prentice Hall, 2017.

 M. Fowler, Refactoring: Improving the Design of
Existing Code, 2nd ed. Addison-Wesley, 2018.

A. Sharma and K. S. Gill, “Machine learning
techniques for software design pattern
detection: A review,” in Journal of King Saud
University - Computer and Information Sciences,
vol. 34, no. 5, pp. 1960–1971, 2022.

M. B. Shaik and Y. N. Rao, "Secret Elliptic Curve-
Based Bidirectional Gated Unit Assisted Residual
Network for Enabling Secure IoT Data
Transmission and Classification Using
Blockchain," IEEE Access, vol. 12, pp. 174424-

174440, 2024, doi:
10.1109/ACCESS.2024.3501357.

S. M. Basha and Y. N. Rao, "A Review on Secure
Data Transmission and Classification of IoT Data
Using Blockchain-Assisted Deep Learning
Models," 2024 10th International Conference on
Advanced Computing and Communication
Systems (ICACCS), Coimbatore, India, 2024, pp.
311-314, doi:
10.1109/ICACCS60874.2024.10717253.

Vellela, S. S., & Balamanigandan, R. (2024). An
efficient attack detection and prevention
approach for secure WSN mobile cloud
environment. Soft Computing, 28(19), 11279-
11293.

Reddy, B. V., Sk, K. B., Polanki, K., Vellela, S. S.,
Dalavai, L., Vuyyuru, L. R., & Kumar, K. K. (2024,
February). Smarter Way to Monitor and Detect
Intrusions in Cloud Infrastructure using Sensor-
Driven Edge Computing. In 2024 IEEE
International Conference on Computing, Power
and Communication Technologies
(IC2PCT) (Vol. 5, pp. 918-922). IEEE.

Sk, K. B., & Thirupurasundari, D. R. (2025,
January). Patient Monitoring based on ICU
Records using Hybrid TCN-LSTM Model. In 2025
International Conference on Multi-Agent
Systems for Collaborative Intelligence
(ICMSCI) (pp. 1800-1805). IEEE.

Dalavai, L., Purimetla, N. M., Vellela, S. S.,
SyamsundaraRao, T., Vuyyuru, L. R., & Kumar, K.
K. (2024, December). Improving Deep Learning-
Based Image Classification Through Noise
Reduction and Feature Enhancement. In 2024
International Conference on Artificial
Intelligence and Quantum Computation-Based
Sensor Application (ICAIQSA) (pp. 1-7). IEEE.

Vellela, S. S., & Balamanigandan, R. (2023). An
intelligent sleep-awake energy management
system for wireless sensor network. Peer-to-
Peer Networking and Applications, 16(6), 2714-
2731.

Haritha, K., Vellela, S. S., Vuyyuru, L. R., Malathi,
N., & Dalavai, L. (2024, December). Distributed
Blockchain-SDN Models for Robust Data
Security in Cloud-Integrated IoT Networks.
In 2024 3rd International Conference on
Automation, Computing and Renewable Systems
(ICACRS) (pp. 623-629). IEEE.

Vullam, N., Roja, D., Rao, N., Vellela, S. S.,
Vuyyuru, L. R., & Kumar, K. K. (2023, December).

Machine Learning-Based Framework for Design Pattern Classification in Object-Oriented Software

16

An Enhancing Network Security: A Stacked
Ensemble Intrusion Detection System for
Effective Threat Mitigation. In 2023 3rd
International Conference on Innovative
Mechanisms for Industry Applications
(ICIMIA) (pp. 1314-1321). IEEE.

Vellela, S. S., & Balamanigandan, R. (2022,
December). Design of Hybrid Authentication
Protocol for High Secure Applications in Cloud
Environments. In 2022 International Conference
on Automation, Computing and Renewable
Systems (ICACRS) (pp. 408-414). IEEE.

Praveen, S. P., Nakka, R., Chokka, A., Thatha, V.
N., Vellela, S. S., & Sirisha, U. (2023). A novel
classification approach for grape leaf disease
detection based on different attention deep
learning techniques. International Journal of
Advanced Computer Science and Applications
(IJACSA), 14(6), 2023.

Vellela, S. S., & Krishna, A. M. (2020). On Board
Artificial Intelligence With Service Aggregation
for Edge Computing in Industrial
Applications. Journal of Critical Reviews, 7(07).

Reddy, N. V. R. S., Chitteti, C., Yesupadam, S.,
Desanamukula, V. S., Vellela, S. S., & Bommagani,
N. J. (2023). Enhanced speckle noise reduction
in breast cancer ultrasound imagery using a
hybrid deep learning model. Ingénierie des
Systèmes d’Information, 28(4), 1063-1071.

Vellela, S. S., Balamanigandan, R., & Praveen, S. P.
(2022). Strategic Survey on Security and Privacy
Methods of Cloud Computing
Environment. Journal of Next Generation
Technology, 2(1).

Polasi, P. K., Vellela, S. S., Narayana, J. L., Simon,
J., Kapileswar, N., Prabu, R. T., & Rashed, A. N. Z.
(2024). Data rates transmission, operation
performance speed and figure of merit signature
for various quadurature light sources under
spectral and thermal effects. Journal of Optics, 1-
11.

Vellela, S. S., Rao, M. V., Mantena, S. V., Reddy, M.
J., Vatambeti, R., & Rahman, S. Z. (2024).

Evaluation of Tennis Teaching Effect Using
Optimized DL Model with Cloud Computing
System. International Journal of Modern
Education and Computer Science
(IJMECS), 16(2), 16-28.

Vuyyuru, L. R., Purimetla, N. R., Reddy, K. Y.,
Vellela, S. S., Basha, S. K., & Vatambeti, R. (2025).
Advancing automated street crime detection: a
drone-based system integrating CNN models
and enhanced feature selection
techniques. International Journal of Machine
Learning and Cybernetics, 16(2), 959-981.

Vellela, S. S., Roja, D., Sowjanya, C., SK, K. B.,
Dalavai, L., & Kumar, K. K. (2023, September).
Multi-Class Skin Diseases Classification with
Color and Texture Features Using Convolution
Neural Network. In 2023 6th International
Conference on Contemporary Computing and
Informatics (IC3I) (Vol. 6, pp. 1682-1687). IEEE.

Praveen, S. P., Vellela, S. S., & Balamanigandan, R.
(2024). SmartIris ML: harnessing machine
learning for enhanced multi-biometric
authentication. Journal of Next Generation
Technology (ISSN: 2583-021X), 4(1).

Sai Srinivas Vellela & R. Balamanigandan (2025).
Designing a Dynamic News App Using Python.
International Journal for Modern Trends in
Science and Technology, 11(03), 429-436.
https://doi.org/10.5281/zenodo.15175402

Basha, S. K., Purimetla, N. R., Roja, D., Vullam, N.,
Dalavai, L., & Vellela, S. S. (2023, December). A
Cloud-based Auto-Scaling System for Virtual
Resources to Back Ubiquitous, Mobile, Real-
Time Healthcare Applications. In 2023 3rd
International Conference on Innovative
Mechanisms for Industry Applications
(ICIMIA) (pp. 1223-1230). IEEE.

Vellela, S. S., & Balamanigandan, R. (2024).
Optimized clustering routing framework to
maintain the optimal energy status in the wsn
mobile cloud environment. Multimedia Tools
and Applications, 83(3), 7919-7938.

