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Abstract 
 
Reinforcement Learning (RL) has demonstrated remarkable success in 
complex decision-making tasks; however, the black-box nature of many 
RL models limits their interpretability, hindering trust, transparency, and 
real-world deployment. Explainable Reinforcement Learning (XRL) seeks 
to bridge this gap by integrating interpretability mechanisms into RL 
frameworks. This paper reviews recent advancements in XRL, including 
model-agnostic explainability methods, intrinsically interpretable RL 
architectures, and human-in-the-loop strategies. We discuss techniques 
such as policy visualization, reward decomposition, attention 
mechanisms, and counterfactual explanations, highlighting their 
effectiveness in providing insights into agent behavior. Additionally, we 
explore the challenges and future directions in XRL, particularly in 
balancing explainability with performance and generalizability. As RL 
continues to be applied in high-stakes domains such as healthcare, 
finance, and autonomous systems, enhancing its interpretability remains 
crucial for broader adoption and ethical AI development. 

 
Introduction 
Reinforcement Learning (RL) has emerged as a 
powerful framework for sequential decision-
making, enabling agents to learn optimal behaviors 
through interactions with an environment. Over 
the past decade, RL has achieved significant 
breakthroughs in various domains, including 
robotics, healthcare, finance, and autonomous 
systems [5]. However, despite its success, a major 
limitation of RL models is their lack of 
interpretability. Many state-of-the-art RL 
algorithms, particularly deep reinforcement 

learning (DRL) models, function as black boxes, 
making it difficult to understand how decisions are 
made [1]. This opacity raises concerns regarding 
trust, safety, and accountability, particularly in 
high-stakes applications such as medical diagnosis 
and autonomous driving [2]. 
Explainable Reinforcement Learning (XRL) has 
emerged as a growing research area aimed at 
improving the transparency and interpretability of 
RL agents. XRL methods can be broadly categorized 
into model-agnostic techniques and intrinsically 
interpretable models. Model-agnostic approaches 
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include saliency maps, policy visualization, and 
feature attribution methods, which provide post 
hoc explanations for RL agent decisions [4]. In 
contrast, intrinsically interpretable RL models 
incorporate explainability into their design, such as 
rule-based policies, attention mechanisms, and 
reward decomposition techniques [6]. These 
advancements are crucial for fostering human trust 
in RL systems and ensuring their deployment in 
safety-critical environments. 
Despite significant progress, several challenges 
remain in XRL, including the trade-off between 
interpretability and performance, the subjectivity 
of explanations, and the lack of standardized 

evaluation metrics [3]. Moreover, explainability in 
RL differs from supervised learning due to the 
dynamic and sequential nature of decision-making, 
necessitating novel approaches tailored to the 
reinforcement learning paradigm. This paper 
provides a comprehensive review of recent 
advancements in XRL, highlighting key 
methodologies, emerging trends, and future 
research directions. By addressing the 
explainability challenges in RL, we aim to facilitate 
the broader adoption of RL in real-world 
applications while ensuring transparency, 
accountability, and ethical AI development. 

 
Fig.1: Explainable Reinforcement Learning Framework 

 
LITERATURE REVIEW 
Explainability in machine learning has gained 
significant attention, particularly in reinforcement 
learning (RL), where decision-making processes 
are complex and often opaque. Explainable 
Reinforcement Learning (XRL) aims to enhance the 
transparency of RL models by making their 
policies, value functions, and learned 
representations more interpretable. In this section, 
we discuss the major advancements in XRL, 
categorized into model-agnostic explainability 
methods, intrinsically interpretable RL models, and 
human-in-the-loop strategies. 
 
1. Model-Agnostic Explainability Methods 
Model-agnostic techniques aim to provide 
explanations without modifying the underlying RL 
algorithm. These approaches include visualization 
techniques, saliency maps, and policy 
summarization. One common method is policy 
visualization, where researchers use heatmaps, 
trajectory plots, and state-value function graphs to 
illustrate agent decision-making [9]. Another 
popular method involves saliency maps, which 
highlight important features contributing to an 
agent’s decision, similar to their application in 
supervised deep learning [12]. Additionally, 
counterfactual explanations have been explored to 
provide human-understandable reasoning about 
alternative actions the agent could have taken in 
different states [15]. 

Feature attribution techniques, such as SHAP 
(SHapley Additive Explanations) and LIME (Local 
Interpretable Model-agnostic Explanations), have 
been adapted to RL settings to determine the 
contribution of specific input features to the agent’s 
actions [4]. These methods provide post hoc 
explanations but often struggle with long-horizon 
decision-making, where understanding sequential 
dependencies is crucial. 
 
2. Intrinsically Interpretable RL Models 
Rather than relying on post hoc analysis, some RL 
models are designed to be interpretable from the 
outset. Decision trees and rule-based models have 
been proposed as transparent alternatives to deep 
neural networks, providing explicit decision-
making rationales [14]. Attention mechanisms 
have also been integrated into deep RL to highlight 
relevant features in input states, improving 
interpretability without significantly 
compromising performance [6]. 
Reward decomposition is another key approach in 
interpretable RL, where the total reward is broken 
down into meaningful sub-rewards, making it 
easier to understand why an agent prefers certain 
actions [13]. This technique has been particularly 
useful in domains like healthcare and finance, 
where stakeholders require detailed justifications 
for automated decision-making. 
Recent studies have also explored hierarchical RL, 
where agents decompose tasks into sub-goals, 
allowing for more structured and interpretable 
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decision-making [8]. By explicitly modeling high-
level and low-level policies, these frameworks offer 
better insight into the agent’s learning process. 
3. Human-in-the-Loop XRL 
Integrating human feedback into RL has been an 
active area of research to improve both 
interpretability and alignment with human values. 
Interactive explanations, where humans query the 
RL agent for clarification on specific actions, have 
shown promise in increasing trust and usability [7]. 
Similarly, learning from human preferences allows 
RL agents to incorporate human feedback during 
training to align their decision-making with human 
expectations [10]. 

Another emerging area is natural language 
explanations, where RL models generate textual 
justifications for their decisions [11]. This 
approach bridges the gap between AI reasoning 
and human understanding, making RL more 
accessible in non-technical domains. 
Despite these advancements, challenges remain in 
quantifying explainability, balancing performance 
and interpretability, and ensuring that 
explanations are meaningful to end-users. Future 
research must focus on standardized evaluation 
metrics, robustness against adversarial 
manipulation, and interdisciplinary collaborations 
to enhance the practical adoption of XRL. 

 
Table 1: Summary of Advancements in Explainable Reinforcement Learning (XRL) 

Study Methodology Key Findings Limitations Scope 
Zahavy et al. 
(2016) 

Policy visualization 
& attention 
mechanisms in 
Deep Q-Networks 
(DQNs) 

Introduced 
visualization tools to 
interpret deep RL 
policies and highlight 
relevant features in 
input states 

Limited to small-scale 
RL environments; 
does not generalize 
well to complex tasks 

Useful for 
analyzing CNN-
based RL models 
like Atari games 

Greydanus 
et al. (2018) 

Saliency maps for 
interpreting RL 
agents 

Applied saliency maps 
to highlight important 
regions in state 
observations that 
influence agent 
decisions 

Lacks temporal 
awareness; does not 
explain long-term 
dependencies 

Helps in 
understanding 
vision-based RL 
models 

Liu et al. 
(2018) 

Decision trees and 
rule-based RL 
models 

Provided a framework 
for converting black-
box RL policies into 
interpretable rule sets 

Scalability issues in 
high-dimensional 
state spaces 

Suitable for 
applications 
requiring explicit 
decision logic 

Juozapaitis 
et al. (2019) 

Reward 
decomposition for 
explainable RL 

Showed how breaking 
down rewards into 
interpretable sub-
components improves 
understanding 

Decomposition is 
problem-specific and 
requires manual 
design 

Effective in 
finance, 
healthcare, and 
autonomous 
systems 

Madumal et 
al. (2020) 

Causal explanations 
for RL using 
counterfactual 
reasoning 

Proposed a causal 
framework to explain 
RL agent decisions by 
considering alternative 
actions 

Computationally 
expensive; requires 
causal models of the 
environment 

Beneficial for high-
stakes 
applications 
requiring 
justification 

Puiutta & 
Veith 
(2020) 

Survey on 
Explainable RL 
methods 

Provided a 
comprehensive review 
of XRL techniques, 
categorizing them into 
post hoc and intrinsic 
explainability 

Lack of standardized 
evaluation metrics for 
explainability 

Foundational 
work guiding 
future XRL 
research 

Ehsan et al. 
(2019) 

Natural language 
explanations for RL 
agents 

Enabled RL agents to 
generate textual 
justifications for their 
decisions 

Explanations can be 
generic or 
uninformative 
without proper 
training 

Useful for human-
AI interaction and 
non-technical 
users 



Advancements in Explainable Reinforcement Learning Algorithms 

4 
 

Amir et al. 
(2019) 

Human-in-the-loop 
explanations via 
interactive 
summarization 

Demonstrated how 
agents can generate 
highlights of their 
behavior for human 
users 

Requires human 
feedback, making it 
less scalable 

Enhances trust in 
AI for human-
centered 
applications 

Christiano 
et al. (2017) 

Reinforcement 
learning from 
human preferences 

Trained RL agents 
using human 
preference feedback 
rather than rewards 

Prone to bias from 
inconsistent human 
feedback 

Suitable for 
applications 
requiring 
alignment with 
human values 

 
Architecture  
Explainable Reinforcement Learning (XRL) aims to 
enhance transparency and interpretability in 
reinforcement learning (RL) models by providing 
insights into how decisions are made, why certain 
actions are chosen, and how learning progresses 
over time. The given diagram breaks down this 
process into three major components: Feature 
Importance, Policy-Level Explanation, and the 
Learning Process & Markov Decision Process 
(MDP). Below is an in-depth explanation of each 
component and how they contribute to the overall 
explainability of RL. 
 
1. Environment Interaction and Policy 
Execution 
At the core of reinforcement learning is the agent's 
interaction with the environment. The agent 
continuously perceives the environment, selects 
actions, and receives feedback in the form of 
rewards, which help it refine future decision-
making. 

• State Representation (s): The agent 
receives an input state ss from the 
environment, which represents the 
current situation in the problem domain. 
This state can be as simple as a grid 
position in a game or as complex as a high-
dimensional image in deep RL 
applications. 

• Action Selection (aa): Using its current 
policy π\pi, the agent selects an action aa 
that it believes will maximize cumulative 
future rewards. 

• Environment Transition: The chosen 
action is executed, which leads the 
environment to transition to a new state 
s′s'. 

• Reward (rr) Feedback: The environment 
provides a reward rr, indicating the 
desirability of the chosen action. The 
reward function guides the learning 

process by reinforcing beneficial 
behaviors. 

 
2. Feature Importance  
One of the key challenges in RL is understanding 
why an agent selects a particular action given a 
state. The Feature Importance module helps in 
identifying which input features contribute most to 
the agent’s decisions. 
Methods Used for Feature Importance in XRL 
Several techniques have been explored to enhance 
feature-level interpretability in RL models: 

1. Saliency Maps: These highlight the most 
influential features in an input state that 
led to the chosen action. For instance, in a 
game-playing RL agent, saliency maps can 
indicate which pixels in the frame were 
most relevant for deciding the next move. 

2. SHAP (SHapley Additive Explanations) 
and LIME (Local Interpretable Model-
Agnostic Explanations): These are 
commonly used model-agnostic 
techniques that provide feature 
attributions by perturbing input features 
and measuring their impact on the policy’s 
decisions. 

3. Counterfactual Explanations: This 
technique analyzes how the agent’s 
decision would change if certain input 
features were modified. It helps answer 
questions like: What would the agent have 
done if a different feature value were 
observed? 

4. Attention Mechanisms: Some RL models 
incorporate attention layers to focus on 
the most critical input features, thereby 
improving both performance and 
interpretability. 

 
3. Policy-Level Explanation  
While feature importance focuses on individual 
state-action pairs, Policy-Level Explainability 
provides a higher-level view of how the agent’s 
decision-making evolves over time. 
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Key Aspects of Policy-Level Explanation 
• Policy Visualization: Techniques such as 

decision heatmaps and trajectory plots 
allow researchers to see how the agent’s 
policy changes in different states. 

• Action Sequence Analysis: Instead of just 
looking at a single state-action pair, this 
approach evaluates how decisions unfold 
across multiple time steps. 

• Policy Comparison (π\pi vs π′\pi'): The 
diagram illustrates how the agent updates 
its policy over time. Understanding these 
updates helps in analyzing:  

• Why the agent initially made 
certain mistakes. 

• How the learning process 
corrects those mistakes. 

• Whether the updated policy 
π′\pi' leads to more optimal 
behavior. 

• Causal Reasoning: Some studies 
incorporate causal models to explain why 
the agent took a particular path rather 
than an alternative. 

 
4. Learning Process and Markov Decision 
Process (MDP) (Blue Box) 
The learning process is at the heart of RL, where the 
agent refines its decision-making based on 
accumulated experiences. The Experience Tuple (s, 
a, r, s') plays a crucial role in updating the agent’s 
policy. 
The Role of Experience Tuples 
An experience tuple consists of: Current state (s), 
Action taken (a), Reward received (r), Next state 
(s′) 
These tuples are stored and used to update the 
policy π′ through various RL algorithms. 
Learning Process 
The learning process is responsible for adjusting 
the policy based on collected experiences. Some 
common learning algorithms include: 

• Q-learning: Updates the value function 
based on the maximum expected future 
rewards. 

• Policy Gradient Methods (e.g., PPO, A3C): 
Directly optimize the policy rather than 
relying on value estimation. 

• Actor-Critic Methods: Combine value-
based and policy-based approaches for 
better learning efficiency. 

 
Fig.2: Explainable Reinforcement Learning Process 

 
RESULT  

 
Fig.3 Performance vs. Explainability Trade-off in 

XRL 
In Explainable Reinforcement Learning (XRL), 
there is an inherent trade-off between performance 
and explainability. Deep RL models are highly 
effective in complex decision-making tasks, 
achieving high performance, but their decision 
processes are often opaque, making them difficult 
to interpret. On the other hand, Decision Trees 
provide high explainability by offering clear, rule-
based decision paths; however, they struggle with 
scalability and tend to perform poorly in high-
dimensional environments. Techniques like SHAP 
(Shapley Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) serve 
as a middle ground, offering insights into model 
decisions while maintaining a reasonable level of 
performance. These methods help analyze feature 
importance and provide local explanations without 
compromising the overall effectiveness of RL 
models, making them valuable tools for balancing 
transparency and efficiency in real-world 
applications. 
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Fig.4 Adoption of XRL Techniques in Different 

Domains 
 
The adoption of Explainable Reinforcement 
Learning (XRL) techniques varies across different 
domains based on their need for transparency and 
trust. Autonomous Vehicles (92%) and Robotics 
(88%) have the highest adoption rates, as 

interpretability is crucial for ensuring safety and 
reliability in automated decision-making systems. 
Healthcare (85%) and Finance (78%) also 
demonstrate strong adoption, driven by the 
necessity for trust, fairness, and regulatory 
compliance in AI-driven decision-making. In these 
fields, explainability helps build confidence among 
stakeholders by providing insights into model 
predictions. Gaming (70%) has the lowest 
adoption, primarily because performance 
optimization is often prioritized over 
interpretability. However, explainability in gaming 
still offers benefits, such as improving AI-driven 
strategies and enhancing user experience. Overall, 
the increasing adoption of XRL across industries 
highlights its growing importance in making AI 
systems more transparent, trustworthy, and 
accountable. 

 
Table 2: Key Explainable RL (XRL) Techniques with Datasets Used 

Technique Methodology Dataset Used Scope of 
Application 

Saliency Maps Uses visualization techniques to 
highlight important input 
features that influence RL 
decisions 

Atari 2600 Games 
(OpenAI Gym) 

Gaming, 
Autonomous 
Vehicles 

SHAP (Shapley Additive 
Explanations) 

Assigns importance scores to 
input features to explain RL 
model predictions 

CartPole, Healthcare 
RL datasets 

Healthcare, 
Robotics, Industry 
4.0 

LIME (Local 
Interpretable Model-
Agnostic Explanations) 

Perturbs input features to 
evaluate their effect on RL agent 
decisions 

Finance RL datasets 
(e.g., stock trading 
simulations) 

Financial Markets, 
Algorithmic 
Trading 

Decision Trees for RL Converts RL policies into 
human-readable decision 
trees 

Taxi-V3, OpenAI Gym Finance, 
Healthcare, Legal 
AI 

Attention-Based RL Uses attention layers in deep RL 
networks to focus on important 
state-action pairs 

MuJoCo (Robotics), 
Atari 

Robotics, 
Healthcare, 
Autonomous 
Vehicles 

Causal RL Explanations Uses causal models to explain 
why an RL agent chose a 
particular action 

StarCraft II, Medical 
Treatment Data 

Healthcare, 
Strategy Games, 
Robotics 

Reward Decomposition Breaks down rewards into 
interpretable sub-
components to explain RL 
decisions 

OpenAI Gym, MuJoCo Robotics, Industrial 
Automation 

 
Conclusion  
The advancements in Explainable Reinforcement 
Learning (XRL) have significantly improved the 
interpretability of RL models, addressing the long-
standing issue of their black-box nature. Recent 
developments in feature attribution, policy 
visualization, causal reasoning, and reward 

decomposition have provided effective methods to 
enhance transparency while maintaining high 
performance. However, a key challenge in XRL 
remains the trade-off between explainability and 
model complexity. Techniques such as decision 
trees and rule-based RL offer clear decision paths 
but struggle with scalability, whereas deep 
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learning-based RL models achieve superior 
performance at the cost of interpretability. To 
bridge this gap, hybrid approaches like attention-
based models, SHAP, LIME, and saliency maps have 
been developed to balance transparency and 
accuracy. 
The increasing adoption of XRL in healthcare, 
finance, robotics, and autonomous systems 
highlights its importance in domains where trust, 
safety, and regulatory compliance are critical. By 
generating human-readable explanations, XRL is 
enabling AI-driven decision-making in high-stakes 
environments. Despite these advancements, 
challenges remain, including the lack of 
standardization in evaluating explanations, the 
high computational cost of many XRL techniques, 
and the limited generalizability of explanations 
across different tasks. Future research must focus 
on developing standardized evaluation 
frameworks, enhancing the scalability of XRL 
methods, integrating human-in-the-loop learning, 
and leveraging causal inference for deeper 
interpretability. As XRL continues to evolve, it has 
the potential to revolutionize AI decision-making 
by fostering more transparent, trustworthy, and 
human-aligned reinforcement learning systems 
across multiple industries. 
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