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Abstract

Automated analysis of microscopic blood smear images plays a crucial
role in modern hematological diagnosis. While existing computer vision
and deep learning techniques have demonstrated strong performance in
detecting and counting isolated blood cells, the classification of
overlapping red blood cells (RBCs) remains a challenging problem due
to ambiguous boundaries and dense cellular arrangements. Traditional
image processing methods often fail under such conditions, leading to
inaccurate cell counts and potential diagnostic errors. In this work, a
deep learning-based framework for the classification of overlapping and
non-overlapping red blood cells is presented. A real microscopic dataset
derived from the publicly available Blood Cell Count Dataset (BCCD) is
utilized. Red blood cell regions are first localized using a pretrained
YOLO-based object detector, followed by a lightweight convolutional
neural network for binary classification of overlapping and single RBCs.
Weak supervision based on morphological area estimation is employed
to generate overlap labels. Experimental evaluation on a dataset of 38
RBC samples demonstrates an overall classification accuracy of up to
80%, with strong recall for single RBCs and moderate performance for
overlapping cases. The results highlight both the effectiveness and the
inherent challenges of overlapping RBC classification in small and
weakly supervised datasets, providing a foundation for future
improvements using larger datasets and pixel-level annotations.

1. Introduction

microscopes and hemocytometers. Although

The Complete Blood Count (CBC) test is one of
the most frequently performed diagnostic
procedures in clinical practice, providing
essential information about a patient’s health
status. Red blood cells (RBCs), which constitute
the largest proportion of blood components, are
responsible for oxygen transport throughout the
human body. Abnormalities in RBC count, shape,
or distribution are key indicators of
hematological disorders such as anemia,
leukemia, and sickle cell disease [1], [3].

Traditionally, blood cell analysis is performed
manually by trained pathologists using

© 2025 The Authors. Published by MRI INDIA.

manual examination is considered reliable, it is
labor-intensive, time-consuming, and prone to
human error and inter-observer variability [1],
[5]- To address these limitations, automated
blood cell analysis systems based on digital
image processing and machine learning have
been widely studied.

Microscopic View of a Blood Smear Sample. This
figure illustrates a typical blood smear slide and
the various cellular components, including red
blood cells (RBCs), leukocytes (Neutrophils,
Lymphocytes, etc.), and platelets. It highlights the

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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baseline visual complexity involved in manual
hematological examinations.
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Figure 1: Representation of microscopic view of
blood Smear Sample

Early approaches relied heavily on classical
image  processing techniques such as
thresholding, edge detection, morphological
operations, and Hough Transform-based circle
detection [3], [19]. While these methods perform
reasonably well for isolated and well-separated
cells, they often fail in the presence of dense
cellular regions where red blood cells overlap or
touch each other. Overlapping RBCs are common
in real blood smear images and pose a major
challenge for segmentation-based pipelines.
Recent advances in deep learning, particularly
convolutional neural networks (CNNs), have
significantly improved performance in medical
image analysis tasks. Object detection
frameworks such as Faster R-CNN and YOLO
treat cell detection as a regression or region
proposal problem, enabling robust localization
even in cluttered scenes [4], [12], [14]. Several
studies have applied these models to blood cell
detection and counting with promising results
[5], [10], [11]. However, most existing works
focus primarily on detection and counting, with
limited emphasis on explicitly classifying
overlapping RBCs as a separate category.

The classification of overlapping red blood cells
is a critical yet under-explored problem.
Overlapping cells can lead to under-counting,
misclassification, and inaccurate clinical
interpretation if not handled properly. This work
aims to address this gap by proposing a practical
deep learning-based framework for classifying
overlapping and non-overlapping RBCs using
real microscopic data and computationally
efficient models.

2. Problem Statement

Despite significant progress in automated blood
cell analysis, accurate classification of
overlapping red blood cells remains a challenging
task. Most traditional segmentation-based
methods assume that RBCs are isolated and
approximately circular, which is rarely the case
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in real blood smear images. When cells overlap,
their boundaries become ambiguous, leading to
merged regions or incorrect segmentation [3],
[19].

Although modern deep learning-based object
detectors can localize blood cells in dense images,
they are generally trained to detect individual
instances and do not explicitly differentiate
between single and overlapping RBCs [5], [10],
[11]. As a result, overlapping cells are often
treated as single instances, causing errors in
downstream classification and counting tasks.
Furthermore, publicly available datasets rarely
provide explicit annotations for overlapping
RBCs, making supervised learning difficult. The
limited dataset size and class imbalance further
complicate model training and evaluation.
Therefore, there is a need for a robust and
computationally efficient approach that can
classify overlapping and non-overlapping red
blood cells using weak supervision and real
microscopic data.

3. Objectives of the Work
The main objectives of this research work are as
follows:

1. To study existing image processing and
deep learning techniques for blood cell
detection, counting, and classification,
with emphasis on their limitations in
handling overlapping red blood cells [1],
(31, [5]-

2. To construct a real RBC dataset from
microscopic blood smear images using a
pretrained object detection model and
weakly supervised labeling strategies.

3. To develop a lightweight convolutional
neural network model for binary
classification of overlapping and non-
overlapping red blood cells.

4. To evaluate the proposed framework
using standard performance metrics such
as accuracy, precision, recall, and F1-
score.

5. To analyze the impact of dataset size,
class imbalance, and weak supervision
on classification performance and identify
key challenges for future research.

4. Literature Survey

Automated analysis of blood smear images has
been an active research area for several decades
due to its importance in clinical diagnosis and the
limitations of manual examination. Existing
approaches for blood cell detection, counting,
and classification can be broadly categorized into
traditional image processing methods,
machine learning-based approaches, and
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deep learning-based detection and

classification frameworks.

A. Traditional Image Processing Approaches
Early research on blood cell analysis primarily
relied on classical image processing techniques.
These methods focused on exploiting the
geometric and color properties of blood cells,
particularly the near-circular shape of red blood
cells.

Guan and Yan [19] proposed a blood cell image
segmentation technique based on the Circular
Hough Transform combined with fuzzy curve
tracing. Their approach effectively detected
circular boundaries of RBCs under controlled
conditions. However, it assumed well-separated
cells and struggled significantly in cases
involving overlapping or irregularly shaped
RBCs.

Varun and Priya [3], [9] presented a digital image
processing-based blood cell counting system that
employed plane extraction, edge detection,
morphological operations, and Circular Hough
Transform. While their system achieved
reasonable accuracy for RBC and WBC counting,
the authors acknowledged that overlapping cells
posed a major limitation, often resulting in
incorrect counts.

Meimban et al. [1] developed a Python OpenCV-
based system using blob detection and color
filtering to count RBCs and WBCs. Although the
system achieved high accuracy for distinct cells,
its performance degraded in dense smear images
where RBCs overlapped, highlighting the
inherent limitations of blob-based methods.
Overall, traditional image processing approaches
are computationally efficient and interpretable
but lack robustness when handling overlapping
cells, uneven illumination, staining variations,
and morphological abnormalities.

B. Machine Learning-Based Approaches

To overcome the rigidity of rule-based methods,
researchers introduced machine learning
techniques that relied on handcrafted feature
extraction followed by classification.

Alam and Islam [5], [7] proposed a machine
learning-based framework using the YOLO object
detection algorithm for automatic identification
and counting of RBCs, WBCs, and platelets. Their
work demonstrated that learning-based models
outperform traditional image processing
techniques, especially in complex backgrounds.
However, their primary focus was detection and
counting rather than explicit classification of
overlapping RBCs.

Wu et al. [6] applied radiomics-based feature
extraction combined with deep learning
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classifiers for white blood cell image
classification. While their study focused on
WBCs, it demonstrated the effectiveness of
combining handcrafted features with learning-
based classifiers in hematological image analysis.
Mohamed et al. [8] explored automated detection
of cancer-related white blood cell abnormalities
using machine learning classifiers. Their work
emphasized the diagnostic importance of
accurate cell classification but did not address
overlapping RBC scenarios.

Machine learning-based methods improved
generalization compared to classical techniques
but still relied heavily on feature engineering and
were sensitive to overlapping and clustered cell
structures.

C. Deep Learning-Based Detection and
Classification

Recent advances in deep learning, particularly
convolutional neural networks (CNNs), have
significantly transformed medical image analysis
by enabling end-to-end learning directly from
raw image data.

Ren et al. [14] introduced Faster R-CNN, which
combined region proposal networks with deep
convolutional features for object detection. the
number of foreground pixels determin

Cheng et al. [4] proposed an improved Faster R-
CNN model for white blood cell detection in blood
smear images. Their method enhanced the region
proposal network to better detect small and
densely packed cells, including partially
overlapping cells. However, their work focused
primarily on WBC detection rather than RBC
overlap classification.

Redmon and Farhadi [12] introduced the YOLO
framework, which treats object detection as a
single regression problem, enabling real-time
detection. Due to its speed and simplicity, YOLO
has been widely adopted in blood cell detection
tasks.

Guo and Zhang [11] further improved YOLOvV5
for blood cell detection by integrating Squeeze-
and-Excitation (SE) attention mechanisms and
advanced bounding box regression losses. Their
approach demonstrated improved performance
in detecting small and overlapping cells,
highlighting the importance of attention
mechanisms in dense cellular environments.

Li et al. [10], [13] proposed a multi-label
detection and classification framework for red
blood cells using deep learning. Their approach
explicitly addressed overlapping RBCs by
treating them as multi-instance regions rather
than attempting strict segmentation. This work is
one of the most relevant studies addressing
overlapping RBC classification, although it
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requires extensive annotations and

computational resources.

D. Deep Learning Architectures and Loss
Functions

Several studies have focused on improving CNN
architectures and loss functions to enhance
performance in dense object detection scenarios.
He et al. [15] introduced deep residual learning
(ResNet), which enabled training of deeper
networks and improved feature representation.
Residual architectures are widely used as
backbones in blood cell detection models.

Lin et al. [16] proposed Focal Loss to address
class imbalance in dense object detection tasks.
This loss function reduces the impact of easy
negatives and is particularly relevant for blood
cell datasets where overlapping cells are
underrepresented.

Hu et al. [17] introduced Squeeze-and-Excitation
networks, which adaptively recalibrate channel-
wise feature responses. SE blocks have been
shown to improve performance in medical image
analysis, especially for small and overlapping
objects.

Zheng et al. [18] proposed Distance-loU (DIoU)
and Efficient-loU (EloU) losses to improve
bounding box regression accuracy and
convergence speed in object detection models.
These losses are particularly effective in crowded
scenes where precise localization of overlapping
objects is required.

Ronneberger et al. [20] proposed the U-Net
architecture for biomedical image segmentation.
While U-Net excels in pixel-level segmentation
tasks, its performance degrades in heavily
overlapping regions without  extensive
annotations.

E. Research Gap
From the reviewed literature, it is evident that:

e Traditional image processing methods fail
to handle overlapping RBCs effectively.

e Machine learning approaches improve
robustness but remain limited by
handcrafted features.

e Deep learning-based object detectors
achieve high detection accuracy but often
focus on counting rather than explicit
overlap classification.

o Explicit classification of overlapping RBCs
remains under-explored, particularly
under weak supervision and limited
dataset conditions.

This motivates the need for a practical and
computationally efficient framework that can
classify overlapping and non-overlapping red
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blood cells using real microscopic data, without
relying on extensive manual annotations.

5. Proposed Methodology

The proposed methodology aims to classify
overlapping and non-overlapping red blood cells
(RBCs) from microscopic blood smear images
using a deep learning-based framework. The
overall pipeline consists of four main stages:
dataset preparation, RBC localization, overlap
classification, and performance evaluation. Two
models are implemented and analyzed: a base
model and an improved model, enabling
comparative performance assessment.
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Proposed System Architecture for Overlapping
RBC Classification: The diagram outlines the end-
to-end pipeline:
1. Inputand Localization using YOLOV5,
2. Weak Supervision via morphological area
estimation for automated labeling,
3. Classification using an improved CNN with
class-weighted loss, and
4. Final Output evaluation
performance metrics.

based on

A. Dataset Preparation

Microscopic blood smear images are obtained
from the publicly available Blood Cell Count
Dataset (BCCD). Since explicit annotations for
overlapping RBCs are not provided, a weakly
supervised labeling strategy is adopted. A subset
of images is processed to extract red blood cell
regions, resulting in dataset sizes of up to 38 RBC

samples, with a balanced distribution of
overlapping and non-overlapping cells.

To address limited data availability,
preprocessing  steps such as resizing,
normalization, and noise-based data
augmentation are applied. This ensures

improved generalization while maintaining
computational efficiency.

B. Red Blood Cell Localization Using YOLO
A pretrained YOLOv5 nano object detection
model is employed to localize red blood cells in
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microscopic images. YOLO treats object detection
as a single-stage regression problem, enabling
fast and robust detection in dense blood smear
images. The lightweight YOLOv5 nano
architecture is selected to ensure rapid inference
and suitability for low-resource environments
[11],[12].

Detected bounding boxes are cropped and
resized to a fixed resolution of 64x64 pixels for
subsequent classification.

C. Weakly Supervised Overlap Labeling

Since manual overlap annotations are
unavailable, RBC regions are labeled using a
morphological area-based heuristic. After
converting cropped RBC images to grayscale,
Otsu thresholding is applied to generate binary
masks. The number of foreground pixels is then
computed to estimate the effective cell area.
Crops exceeding a predefined area threshold are
labeled as overlapping RBCs, while smaller
regions are labeled as single RBCs. This weak

supervision strategy enables overlap
classification without requiring pixel-level
annotations.

Detailed Logic for Weakly Supervised RBC
Labeling. This framework shows the localized
RBC crops being analyzed based on an area
threshold. If the area exceeds a predefined value,
the crop is labeled as 'Overlapping'; otherwise, it
is classified as 'Single'. This automated labeling
provides the ground truth for training the
classifier.

3. Classfication

1. Input

2. Detection & Labeling
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Figure 3: RBC overlapping classification

Morphological Area Estimation and Label
Assignment

The morphological area estimation is derived
from the pixel count of the binary mask obtained
using Otsu’s thresholding method. For a cropped
red blood cell (RBC) region of height Hand width
W, the effective area Ais computed as:
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H

A=

w
D B
=1

where B(i,j) € {0,1}represents the binary value
of the pixel at spatial coordinates (i’j)after
thresholding.

To distinguish between single and overlapping
RBCs, the computed area is compared against a
predefined threshold T. Crops satisfying:

A>T

i=

are classified as overlapping cells and assigned
the label L = 1, while those with:

AT

are categorized as single cells and assigned the
label L = 0.

D. Overlapping RBC Classification Using CNN

A lightweight convolutional neural network
(CNN) is designed for binary classification of
overlapping and non-overlapping RBCs. The
base model consists of two convolutional layers
followed by max-pooling and fully connected
layers. This model serves as a baseline to
evaluate the feasibility of overlap classification
using limited data.

To improve performance, an enhanced CNN
model is introduced with dropout layers for
regularization and noise-based data
augmentation during training. Additionally,
class-weighted cross-entropy loss is employed to
mitigate the impact of class imbalance between
overlapping and single RBCs. These
enhancements enable improved recall and F1-
score for minority classes.

Overlapping RBC Classification

To mitigate the impact of class imbalance
between single and overlapping red blood cells
(RBCs), a class-weighted cross-entropy loss
function is employed during model training. This
approach ensures that underrepresented classes
contribute proportionally to the optimization
process.

The loss function is defined as:

2
L== w % log@)
c=1
where:
e cdenotes the class index (¢ = 1 for single
RBCs and ¢ = 2for overlapping RBCs),
e w.represents the weight assigned to class
cto balance its contribution to the loss,
e y. € {0,1}is the ground-truth label, and
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e .is the predicted probability for class c.
By assigning higher weights to the minority class,
the proposed loss formulation effectively reduces
classification bias and improves recall for
overlapping RBCs, resulting in more balanced
and robust model performance.

E. Model Training and Evaluation

The dataset is split into training and testing sets
using a hold-out validation strategy. Models are
trained wusing the Adam optimizer with
categorical cross-entropy loss. Performance is
evaluated using accuracy, precision, recall, and
F1-score metrics. Additional analyses, including
confusion matrix, ROC curve, and prediction
confidence distribution, are performed to
provide deeper insight into model behavior.
Comparative evaluation between the base model
and the improved model demonstrates that the

inclusion of data augmentation, dropout
regularization, and  class-weighted loss
significantly improves classification

performance, achieving up to 80% accuracy on
the test set.

Accuracy Metric

Accuracy is employed as a primary performance
metric to evaluate the overall reliability of the
proposed lightweight CNN model. It is defined as:

A _ TP + TN
ey = b Y TN + FP + FN

where TPand TNdenote the number of true
positives and true negatives, respectively, while
FPand FNrepresent false positives and false
negatives.

Experimental Evaluation and Justification:
The experimental evaluation utilizes standard
classification metrics to assess the effectiveness
and robustness of the proposed model. Accuracy
serves as a global indicator of correct predictions
across both single and overlapping RBC
categories. The improved model demonstrates a
substantial increase in accuracy from 50% to
80%, primarily attributed to the incorporation of
regularization techniques and data augmentation
strategies. This improvement confirms the
enhanced  generalization capability and
reliability of the final architecture.

F. Comparative Analysis of Base and Improved
Models

The base model achieves moderate accuracy but
struggles with overlapping RBC classification due
to limited training data and class imbalance. In
contrast, the improved model exhibits better
generalization and higher recall for single RBCs
while maintaining reasonable precision for
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overlapping cases. This comparative analysis
highlights the importance of regularization and
imbalance-aware training strategies in medical
image classification tasks involving limited
datasets.

6. Results and Discussion
This section presents the experimental results
obtained using two different models for the
classification of overlapping and non-
overlapping red blood cells (RBCs):
1. abase model, and
2. an improved model incorporating data
augmentation and regularization
techniques.
The experiments were conducted on a real
dataset derived from the BCCD blood smear
images. Due to the absence of explicit overlap
annotations, weak supervision was employed for
labeling overlapping and single RBCs.

A. Dataset Characteristics

For the base model, a total of 19 RBC samples
were extracted, with a label distribution of 8
single RBCs and 11 overlapping RBCs. The
dataset was split into 13 training samples and
6 test samples.

For the improved model, the dataset size was
increased to 38 RBC samples, with a more
balanced distribution of 17 single RBCs and 21
overlapping RBCs. The corresponding training
and testing split resulted in 28 training samples
and 10 test samples.

Sample RBC Images from BCCD Dataset

Overlap Overlap Overlap
Single Single Overlap
£
’
Single Overlap Single

0 (
'

Figure 4: Sample RBC images from BCCD Dataset

Although the dataset size remains limited, it
reflects  realistic = constraints = commonly
encountered in medical image analysis tasks
where annotated data is scarce.
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The dataset was expanded for the improved
model to include 38 RBC samples. As illustrated
in the bar chart, the distribution consists of 17
single RBCs and 21 overlapping RBCs. This
ensures a more balanced representation
compared to the initial pilot dataset.

Class Distribution of RBC Dataset

10

Number of Samples
o

0 -

Single RBC

Overlapping RBC
Figure 5: Class distribution of RBC Dataset

B. Performance of the Base Model
The base model consists of a lightweight
convolutional neural network trained on
cropped RBC regions without explicit
regularization or class-imbalance handling. The
classification report for the base model is
summarized below:

e Accuracy: 50%

o Single RBC: Precision = 0.00, Recall = 0.00

e Overlapping RBC: Precision = 0.50, Recall

=1.00

The results indicate that the base model exhibits
a strong bias toward predicting the overlapping
RBC class. This behaviour is primarily due to the
small training set and class imbalance, where
overlapping RBCs dominate the dataset. As a
result, the model fails to correctly identify single
RBCs, leading to zero precision and recall for that
class.

Confusion Matrix for Overlapping RBC Clas: cifion

2.5
Single RBC 4 0
2.0
T
p=}
T
- L5
L
2
E
. 1.0
Overlapping RBC 1 0
05
Single RBC  Overlapping RBC 00

Predicted Label

Figure 6: Confusion matrix for overlapping RBC
Classification of base model

43

Prediction Confidence Distribution
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Figure 7: Prediction confidence distribution of
base model

The performance metrics for the initial
experiment indicate a significant classification
failure, particularly within the 'Single RBC'
category, which recorded a recall of 0.00. The
confusion matrix further reveals a severe class
bias, as the model incorrectly assigned all test
samples to the 'Overlapping RBC' class. This
systematic error resulted in an overall accuracy
of only 50%, essentially no better than random
guessing for a binary task. This failure can be
attributed to the limited training data and the
lack of explicit regularization, which caused the
lightweight CNN to overfit on the majority class
features. Consequently, the model failed to learn
the unique morphological characteristics of
isolated cells, highlighting the necessity for
advanced techniques like data augmentation and
class-weighted loss to achieve reliable
performance.

C. Performance of the Improved Model
To address the limitations observed in the base
model, several enhancements were introduced,
including:
e increased dataset size,
e noise-based data augmentation,
e dropout regularization, and
e improved training stability.
The improved model achieved the following
performance on the test set:
e Overall Accuracy: 80%
¢ Single RBC: Precision = 0.78, Recall = 1.00,
F1-score = 0.88
e Overlapping RBC: Precision = 1.00, Recall
=0.33, F1-score = 0.50
Compared to the base model, the improved
model demonstrates a significant increase in
overall accuracy and a substantial improvement
in the classification of single RBCs. The perfect
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recall for single RBCs indicates that the model
successfully learned discriminative features for
isolated cells.

However, the recall for overlapping RBCs
remains limited. This can be attributed to the
visual ambiguity of overlapping regions and the
use of weak supervision for label generation.
Overlapping RBCs often exhibit varying degrees
of occlusion, making them difficult to distinguish
from densely packed single cells.

The experimental results for the base model
demonstrate a profound classification failure,
specifically within the 'Single RBC' category,
which yielded a recall and precision of 0.00. The
confusion matrix reveals a severe class bias, as
the model incorrectly assigned 100% of the test
instances to the 'Overlapping RBC' class. This
systematic error indicates that the lightweight
CNN failed to achieve proper convergence on the
minority class, likely due to the lack of explicit
regularization and the presence of significant
class imbalance within the initial training set.
Furthermore, the prediction confidence
distribution is concentrated in an extremely
narrow and low range, centered approximately
at 0.52. This marginal confidence level—barely
exceeding the threshold of a random binary
guess—signifies a critical lack of discriminative
stability within the model's feature extraction
layers. Without the implementation of data
augmentation or class-weighted loss, the
convolutional filters remained incapable of
distinguishing the unique morphological
boundaries of isolated cells from dense
overlapping clusters, leading to a highly skewed
and unreliable predictive framework.

Confusion Matrix for Overlapping RBC Clas chtion

6

Single RBC 0 5

3 4
L
g

£ 3

Overlapping RBC 2 1 2

1

T T
Single RBC Overlapping RBC 0

Predicted Label

Figure 8: Confusion matrix for overlapping RBC
classification for improved model

The implementation of class-weighted loss and
data augmentation successfully eliminated the
prior bias, resulting in a perfect recall of 1.00 for
the 'Single RBC' class. The matrix confirms that 7
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out of 7 single RBC test samples were correctly
identified.

Per-Class Precision, Recall, and F1-score
10

EEm Precision
m Recall

08 . Fl-score

0.6

Score

0.4

0.2

00

Single RBC

Overlapping RBC

Figure 9: Preclass precision, recall and F1-score
for single and overlapping RBC

The improved model demonstrated a substantial
increase in overall accuracy, reaching 80% on the
test dataset. The ROC curve analysis yielded an
AUC (Area Under the Curve) of 0.81, which
validates the model's enhanced capability to
distinguish between single and overlapping cell
morphologies effectively.

Prediction Confidence Distribution

Frequency

T T T T
0.506 0508 0510 0512

Prediction Confidence

T
0.502 0.504 0.514

Figure 10: Prediction Confidence Distribution of
improved model

ROC Curve for Overlapping RBC Classification

True Positive Rate

0.0 4 — AUC=0.81

T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 11: ROC curve for overlapping RBC
classification of improved model
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Unlike the base model, this enhanced framework
exhibits a much higher True Positive Rate (TPR)
across various thresholds, indicating that the
integration of dropout regularization and class-
weighted loss successfully addressed the
previous issues of class bias. This performance
confirms that the model is not merely predicting
the majority class but has learned discriminative
morphological features to separate individual
cells from complex, overlapping clusters.

D. Comparative Analysis

A direct comparison between the base and
improved models highlights the effectiveness of
the proposed enhancements. While the base
model suffers from class bias and poor
generalization, the improved model achieves
balanced performance across classes with a
notable increase in accuracy from 50% to 80%.

Table 1. Comparative Analaysis

Metric / | Base Improv | Impact /
Feature | Model ed Observati
Model on
Dataset 19 38 Improved
Size samples | samples | learning
capability
due to
increased
data
volume
Overall 50% 80% Significant
Accurac improvem
y ent in
prediction
reliability
Single 0.00 91.00 Eliminated
RBC bias
Recall against
isolated
red blood
cells
Regulari | None Dropout | Reduced
zation & Data | overfitting
Techniq Augmen | on a
ues tation limited
dataset
Class Naive Class- Balanced
Imbalan | Training | Weighte | performan
ce d Loss ce cell
Handlin categories
8

The results confirm that data augmentation and
regularization play a critical role in improving
classification performance when working with
small and weakly labeled medical datasets. At the
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same time, the remaining misclassifications
emphasize the inherent challenge of overlapping
RBC classification, even for deep learning-based
approaches.

The performance of the proposed classification
framework was evaluated in two stages: an initial
baseline experiment and an improved
regularized model. This two-phase evaluation
highlights the limitations of the naive approach
and the effectiveness of the proposed
improvements.

1. Base Model Performance (Failure Case)
The initial iteration of the model demonstrated a
complete failure in class discrimination due to a
strong bias toward the majority class. This
behavior is primarily attributed to the extremely
limited dataset size and the absence of
regularization mechanisms.

Table 2. Base Model Classification Metrics

Metric Single | Overlapp | Overall
RBC ing RBC Accurac
y
Precision | 0.00 0.50 50%
Recall 0.00 1.00 -
F1-Score 0.00 0.67 -
Analysis:

With only 19 total samples, the base model was
unable to learn meaningful discriminative
features. The recall of 0.00 for Single RBCs
indicates that every isolated cell in the test set
was incorrectly classified as an overlapping RBC.
This confirms severe class bias and highlights the
inadequacy of naive training on highly
imbalanced and small datasets.

2. Improved Model Performance (Success
Case)

To address the observed limitations, the dataset
size was increased to 38 samples, and the model
was retrained for 10 epochs using improved
hyperparameters, regularization techniques, and
class-weighted loss.

Table 3. Improved Model Classification Metrics

Metric Single | Overlapp | Overall

RBC ing RBC Accurac

y

Precision | 0.78 1.00 80%
Recall 1.00 0.33 -
F1-Score 0.88 0.50 -
Analysis:
The improved model achieved a substantial
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increase in overall accuracy, reaching 80%. Most
notably, it attained a recall of 1.00 for Single
RBCs, indicating perfect identification of isolated
cells. While the recall for overlapping RBCs
remains comparatively lower (0.33), this
limitation is largely attributed to ambiguous cell
boundaries and dense cluster formations, which
remain challenging under small-scale data
conditions.

3. Comparative Summary

The transition from the baseline model to the
improved architecture resulted in a 30%
increase in overall accuracy and a complete
recovery of Single RBC detection capability
(Recall: 0.00 —» 1.00). These results clearly
demonstrate the effectiveness of dataset
expansion, regularization strategies, and class-
imbalance handling in improving model
reliability and robustness.

E. Discussion and Limitations

Despite the encouraging results obtained with
the improved model, several limitations remain.
The dataset size is relatively small, and the
overlap labels are generated using morphological
heuristics rather than manual expert
annotations. This weak supervision introduces
label noise, which directly affects the recall of
overlapping RBCs.

Furthermore, overlapping RBCs represent a
continuum rather than a binary category, making
strict classification inherently difficult. These
factors explain the observed trade-off between
precision and recall for overlapping RBCs.
Nevertheless, the  experimental results
demonstrate that the proposed framework is
capable of learning meaningful representations
of RBC morphology and provides a solid
foundation for future improvements using larger
datasets and pixel-level annotations.

Summary of Key Findings

e Base model accuracy: 50%, with severe
class bias

e Improved model accuracy: 80%, with
balanced performance

e Strong improvement in
classification

e Overlapping RBC classification remains
challenging due to ambiguity and weak
labels

single RBC

7. Conclusion and Future Scope

A. Conclusion

This work presented a deep learning-based
framework for the classification of overlapping
and non-overlapping red blood cells in
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microscopic blood smear images. A practical and
computationally efficient pipeline was developed
using a pretrained YOLO-based detector for red
blood cell localization followed by a lightweight
convolutional neural network for overlap
classification. Due to the absence of explicit
overlap annotations in publicly available
datasets, a weakly supervised labeling strategy
based on morphological area estimation was
employed.

Experimental evaluation was carried out using
two models: a base CNN model and an improved
model incorporating data augmentation and
regularization techniques. The base model
demonstrated limited performance with an
accuracy of 50%, primarily due to dataset
imbalance and insufficient generalization
capability. In contrast, the improved model
achieved an accuracy of up to 80%, with strong
recall for single red blood cells and moderate
performance for overlapping cases. These results
confirm  that regularization and data
augmentation significantly enhance classification
performance in small and weakly labeled
datasets.

Although the classification of overlapping red
blood cells remains challenging due to
ambiguous morphological boundaries, the
proposed approach successfully demonstrates
the feasibility of overlap classification using real
microscopic data and lightweight deep learning
models. The obtained results provide a
meaningful baseline for further research in
automated hematological analysis.

B. Future Scope

While the proposed framework yields
encouraging results, several directions exist for
future improvement. First, the performance of
overlapping red blood cell classification can be
enhanced by increasing the dataset size and
incorporating expert-annotated overlap labels to
reduce noise introduced by weak supervision.
Pixel-level annotations would enable the use of
advanced segmentation architectures such as U-
Net for more accurate boundary delineation.
U-Net Architecture for Advanced Pixel-Level
Segmentation. As a part of future work, this U-
shaped architecture is proposed to transition
from bounding-box classification to precise
segmentation. This will help in accurately
delineating the exact boundaries of overlapping
cells in dense arrangements.

Second, more sophisticated overlap
characterization methods, such as intersection-
over-union (IoU) analysis and shape-based
feature learning, can be explored to better
distinguish partially overlapping cells. The
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integration of attention mechanisms and deeper

feature extraction networks may further
improve robustness in dense cellular
environments.

Third, extending the framework to multi-class
classification of red blood cell morphologies,
including abnormal and pathological cell types,
would increase its clinical relevance. Finally,
integrating the proposed system into a complete
automated blood analysis pipeline and validating
iton larger, multi-center datasets would facilitate
its adoption in real-world clinical applications.
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