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Abstract 

Automated analysis of microscopic blood smear images plays a crucial 
role in modern hematological diagnosis. While existing computer vision 
and deep learning techniques have demonstrated strong performance in 
detecting and counting isolated blood cells, the classification of 
overlapping red blood cells (RBCs) remains a challenging problem due 
to ambiguous boundaries and dense cellular arrangements. Traditional 
image processing methods often fail under such conditions, leading to 
inaccurate cell counts and potential diagnostic errors. In this work, a 
deep learning–based framework for the classification of overlapping and 
non-overlapping red blood cells is presented. A real microscopic dataset 
derived from the publicly available Blood Cell Count Dataset (BCCD) is 
utilized. Red blood cell regions are first localized using a pretrained 
YOLO-based object detector, followed by a lightweight convolutional 
neural network for binary classification of overlapping and single RBCs. 
Weak supervision based on morphological area estimation is employed 
to generate overlap labels. Experimental evaluation on a dataset of 38 
RBC samples demonstrates an overall classification accuracy of up to 
80%, with strong recall for single RBCs and moderate performance for 
overlapping cases. The results highlight both the effectiveness and the 
inherent challenges of overlapping RBC classification in small and 
weakly supervised datasets, providing a foundation for future 
improvements using larger datasets and pixel-level annotations. 

 
 
1. Introduction 
The Complete Blood Count (CBC) test is one of 
the most frequently performed diagnostic 
procedures in clinical practice, providing 
essential information about a patient’s health 
status. Red blood cells (RBCs), which constitute 
the largest proportion of blood components, are 
responsible for oxygen transport throughout the 
human body. Abnormalities in RBC count, shape, 
or distribution are key indicators of 
hematological disorders such as anemia, 
leukemia, and sickle cell disease [1], [3]. 
Traditionally, blood cell analysis is performed 
manually by trained pathologists using 

microscopes and hemocytometers. Although 
manual examination is considered reliable, it is 
labor-intensive, time-consuming, and prone to 
human error and inter-observer variability [1], 
[5]. To address these limitations, automated 
blood cell analysis systems based on digital 
image processing and machine learning have 
been widely studied. 
Microscopic View of a Blood Smear Sample. This 
figure illustrates a typical blood smear slide and 
the various cellular components, including red 
blood cells (RBCs), leukocytes (Neutrophils, 
Lymphocytes, etc.), and platelets. It highlights the 
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baseline visual complexity involved in manual 
hematological examinations. 
 

 
Figure 1: Representation of microscopic view of 
blood Smear Sample 
 
Early approaches relied heavily on classical 
image processing techniques such as 
thresholding, edge detection, morphological 
operations, and Hough Transform-based circle 
detection [3], [19]. While these methods perform 
reasonably well for isolated and well-separated 
cells, they often fail in the presence of dense 
cellular regions where red blood cells overlap or 
touch each other. Overlapping RBCs are common 
in real blood smear images and pose a major 
challenge for segmentation-based pipelines. 
Recent advances in deep learning, particularly 
convolutional neural networks (CNNs), have 
significantly improved performance in medical 
image analysis tasks. Object detection 
frameworks such as Faster R-CNN and YOLO 
treat cell detection as a regression or region 
proposal problem, enabling robust localization 
even in cluttered scenes [4], [12], [14]. Several 
studies have applied these models to blood cell 
detection and counting with promising results 
[5], [10], [11]. However, most existing works 
focus primarily on detection and counting, with 
limited emphasis on explicitly classifying 
overlapping RBCs as a separate category. 
The classification of overlapping red blood cells 
is a critical yet under-explored problem. 
Overlapping cells can lead to under-counting, 
misclassification, and inaccurate clinical 
interpretation if not handled properly. This work 
aims to address this gap by proposing a practical 
deep learning–based framework for classifying 
overlapping and non-overlapping RBCs using 
real microscopic data and computationally 
efficient models. 
 
2. Problem Statement 
Despite significant progress in automated blood 
cell analysis, accurate classification of 
overlapping red blood cells remains a challenging 
task. Most traditional segmentation-based 
methods assume that RBCs are isolated and 
approximately circular, which is rarely the case 

in real blood smear images. When cells overlap, 
their boundaries become ambiguous, leading to 
merged regions or incorrect segmentation [3], 
[19]. 
Although modern deep learning-based object 
detectors can localize blood cells in dense images, 
they are generally trained to detect individual 
instances and do not explicitly differentiate 
between single and overlapping RBCs [5], [10], 
[11]. As a result, overlapping cells are often 
treated as single instances, causing errors in 
downstream classification and counting tasks. 
Furthermore, publicly available datasets rarely 
provide explicit annotations for overlapping 
RBCs, making supervised learning difficult. The 
limited dataset size and class imbalance further 
complicate model training and evaluation. 
Therefore, there is a need for a robust and 
computationally efficient approach that can 
classify overlapping and non-overlapping red 
blood cells using weak supervision and real 
microscopic data. 
 
3. Objectives of the Work 
The main objectives of this research work are as 
follows: 

1. To study existing image processing and 
deep learning techniques for blood cell 
detection, counting, and classification, 
with emphasis on their limitations in 
handling overlapping red blood cells [1], 
[3], [5]. 

2. To construct a real RBC dataset from 
microscopic blood smear images using a 
pretrained object detection model and 
weakly supervised labeling strategies. 

3. To develop a lightweight convolutional 
neural network model for binary 
classification of overlapping and non-
overlapping red blood cells. 

4. To evaluate the proposed framework 
using standard performance metrics such 
as accuracy, precision, recall, and F1-
score. 

5. To analyze the impact of dataset size, 
class imbalance, and weak supervision 
on classification performance and identify 
key challenges for future research. 

 
4. Literature Survey 
Automated analysis of blood smear images has 
been an active research area for several decades 
due to its importance in clinical diagnosis and the 
limitations of manual examination. Existing 
approaches for blood cell detection, counting, 
and classification can be broadly categorized into 
traditional image processing methods, 
machine learning-based approaches, and 
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deep learning-based detection and 
classification frameworks. 
 
A. Traditional Image Processing Approaches 
Early research on blood cell analysis primarily 
relied on classical image processing techniques. 
These methods focused on exploiting the 
geometric and color properties of blood cells, 
particularly the near-circular shape of red blood 
cells. 
Guan and Yan [19] proposed a blood cell image 
segmentation technique based on the Circular 
Hough Transform combined with fuzzy curve 
tracing. Their approach effectively detected 
circular boundaries of RBCs under controlled 
conditions. However, it assumed well-separated 
cells and struggled significantly in cases 
involving overlapping or irregularly shaped 
RBCs. 
Varun and Priya [3], [9] presented a digital image 
processing-based blood cell counting system that 
employed plane extraction, edge detection, 
morphological operations, and Circular Hough 
Transform. While their system achieved 
reasonable accuracy for RBC and WBC counting, 
the authors acknowledged that overlapping cells 
posed a major limitation, often resulting in 
incorrect counts. 
Meimban et al. [1] developed a Python OpenCV-
based system using blob detection and color 
filtering to count RBCs and WBCs. Although the 
system achieved high accuracy for distinct cells, 
its performance degraded in dense smear images 
where RBCs overlapped, highlighting the 
inherent limitations of blob-based methods. 
Overall, traditional image processing approaches 
are computationally efficient and interpretable 
but lack robustness when handling overlapping 
cells, uneven illumination, staining variations, 
and morphological abnormalities. 
 
B. Machine Learning-Based Approaches 
To overcome the rigidity of rule-based methods, 
researchers introduced machine learning 
techniques that relied on handcrafted feature 
extraction followed by classification. 
Alam and Islam [5], [7] proposed a machine 
learning-based framework using the YOLO object 
detection algorithm for automatic identification 
and counting of RBCs, WBCs, and platelets. Their 
work demonstrated that learning-based models 
outperform traditional image processing 
techniques, especially in complex backgrounds. 
However, their primary focus was detection and 
counting rather than explicit classification of 
overlapping RBCs. 
Wu et al. [6] applied radiomics-based feature 
extraction combined with deep learning 

classifiers for white blood cell image 
classification. While their study focused on 
WBCs, it demonstrated the effectiveness of 
combining handcrafted features with learning-
based classifiers in hematological image analysis. 
Mohamed et al. [8] explored automated detection 
of cancer-related white blood cell abnormalities 
using machine learning classifiers. Their work 
emphasized the diagnostic importance of 
accurate cell classification but did not address 
overlapping RBC scenarios. 
Machine learning-based methods improved 
generalization compared to classical techniques 
but still relied heavily on feature engineering and 
were sensitive to overlapping and clustered cell 
structures. 
 
C. Deep Learning-Based Detection and 
Classification 
Recent advances in deep learning, particularly 
convolutional neural networks (CNNs), have 
significantly transformed medical image analysis 
by enabling end-to-end learning directly from 
raw image data. 
Ren et al. [14] introduced Faster R-CNN, which 
combined region proposal networks with deep 
convolutional features for object detection. the 
number of foreground pixels determin 
Cheng et al. [4] proposed an improved Faster R-
CNN model for white blood cell detection in blood 
smear images. Their method enhanced the region 
proposal network to better detect small and 
densely packed cells, including partially 
overlapping cells. However, their work focused 
primarily on WBC detection rather than RBC 
overlap classification. 
Redmon and Farhadi [12] introduced the YOLO 
framework, which treats object detection as a 
single regression problem, enabling real-time 
detection. Due to its speed and simplicity, YOLO 
has been widely adopted in blood cell detection 
tasks. 
Guo and Zhang [11] further improved YOLOv5 
for blood cell detection by integrating Squeeze-
and-Excitation (SE) attention mechanisms and 
advanced bounding box regression losses. Their 
approach demonstrated improved performance 
in detecting small and overlapping cells, 
highlighting the importance of attention 
mechanisms in dense cellular environments. 
Li et al. [10], [13] proposed a multi-label 
detection and classification framework for red 
blood cells using deep learning. Their approach 
explicitly addressed overlapping RBCs by 
treating them as multi-instance regions rather 
than attempting strict segmentation. This work is 
one of the most relevant studies addressing 
overlapping RBC classification, although it 
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requires extensive annotations and 
computational resources. 
 
D. Deep Learning Architectures and Loss 
Functions 
Several studies have focused on improving CNN 
architectures and loss functions to enhance 
performance in dense object detection scenarios. 
He et al. [15] introduced deep residual learning 
(ResNet), which enabled training of deeper 
networks and improved feature representation. 
Residual architectures are widely used as 
backbones in blood cell detection models. 
Lin et al. [16] proposed Focal Loss to address 
class imbalance in dense object detection tasks. 
This loss function reduces the impact of easy 
negatives and is particularly relevant for blood 
cell datasets where overlapping cells are 
underrepresented. 
Hu et al. [17] introduced Squeeze-and-Excitation 
networks, which adaptively recalibrate channel-
wise feature responses. SE blocks have been 
shown to improve performance in medical image 
analysis, especially for small and overlapping 
objects. 
Zheng et al. [18] proposed Distance-IoU (DIoU) 
and Efficient-IoU (EIoU) losses to improve 
bounding box regression accuracy and 
convergence speed in object detection models. 
These losses are particularly effective in crowded 
scenes where precise localization of overlapping 
objects is required. 
Ronneberger et al. [20] proposed the U-Net 
architecture for biomedical image segmentation. 
While U-Net excels in pixel-level segmentation 
tasks, its performance degrades in heavily 
overlapping regions without extensive 
annotations. 
 
E. Research Gap 
From the reviewed literature, it is evident that: 

 Traditional image processing methods fail 
to handle overlapping RBCs effectively. 

 Machine learning approaches improve 
robustness but remain limited by 
handcrafted features. 

 Deep learning-based object detectors 
achieve high detection accuracy but often 
focus on counting rather than explicit 
overlap classification. 

 Explicit classification of overlapping RBCs 
remains under-explored, particularly 
under weak supervision and limited 
dataset conditions. 

This motivates the need for a practical and 
computationally efficient framework that can 
classify overlapping and non-overlapping red 

blood cells using real microscopic data, without 
relying on extensive manual annotations. 
 
5. Proposed Methodology 
The proposed methodology aims to classify 
overlapping and non-overlapping red blood cells 
(RBCs) from microscopic blood smear images 
using a deep learning–based framework. The 
overall pipeline consists of four main stages: 
dataset preparation, RBC localization, overlap 
classification, and performance evaluation. Two 
models are implemented and analyzed: a base 
model and an improved model, enabling 
comparative performance assessment. 
 

 
Figure 2: Architecture Flow 

 
Proposed System Architecture for Overlapping 
RBC Classification: The diagram outlines the end-
to-end pipeline:  

1. Input and Localization using YOLOv5, 
2. Weak Supervision via morphological area 

estimation for automated labeling,  
3. Classification using an improved CNN with 

class-weighted loss, and  
4. Final Output evaluation based on 

performance metrics. 
 
A. Dataset Preparation 
Microscopic blood smear images are obtained 
from the publicly available Blood Cell Count 
Dataset (BCCD). Since explicit annotations for 
overlapping RBCs are not provided, a weakly 
supervised labeling strategy is adopted. A subset 
of images is processed to extract red blood cell 
regions, resulting in dataset sizes of up to 38 RBC 
samples, with a balanced distribution of 
overlapping and non-overlapping cells. 
To address limited data availability, 
preprocessing steps such as resizing, 
normalization, and noise-based data 
augmentation are applied. This ensures 
improved generalization while maintaining 
computational efficiency. 
 
B. Red Blood Cell Localization Using YOLO 
A pretrained YOLOv5 nano object detection 
model is employed to localize red blood cells in 
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microscopic images. YOLO treats object detection 
as a single-stage regression problem, enabling 
fast and robust detection in dense blood smear 
images. The lightweight YOLOv5 nano 
architecture is selected to ensure rapid inference 
and suitability for low-resource environments 
[11], [12]. 
Detected bounding boxes are cropped and 
resized to a fixed resolution of 64×64 pixels for 
subsequent classification. 
 
C. Weakly Supervised Overlap Labeling 
Since manual overlap annotations are 
unavailable, RBC regions are labeled using a 
morphological area-based heuristic. After 
converting cropped RBC images to grayscale, 
Otsu thresholding is applied to generate binary 
masks. The number of foreground pixels is then 
computed to estimate the effective cell area. 
Crops exceeding a predefined area threshold are 
labeled as overlapping RBCs, while smaller 
regions are labeled as single RBCs. This weak 
supervision strategy enables overlap 
classification without requiring pixel-level 
annotations. 
Detailed Logic for Weakly Supervised RBC 
Labeling. This framework shows the localized 
RBC crops being analyzed based on an area 
threshold. If the area exceeds a predefined value, 
the crop is labeled as 'Overlapping'; otherwise, it 
is classified as 'Single'. This automated labeling 
provides the ground truth for training the 
classifier. 
 

 
Figure 3: RBC overlapping classification 

 
Morphological Area Estimation and Label 
Assignment 
The morphological area estimation is derived 
from the pixel count of the binary mask obtained 
using Otsu’s thresholding method. For a cropped 
red blood cell (RBC) region of height 𝐻and width 
𝑊, the effective area 𝐴is computed as: 

𝐴 =∑∑𝐵(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 

where 𝐵(𝑖, 𝑗) ∈ {0,1}represents the binary value 
of the pixel at spatial coordinates (𝑖, 𝑗)after 
thresholding. 
To distinguish between single and overlapping 
RBCs, the computed area is compared against a 
predefined threshold 𝑇. Crops satisfying: 

𝐴 > 𝑇 

are classified as overlapping cells and assigned 
the label 𝐿 = 1, while those with: 

𝐴 ≤ 𝑇 

are categorized as single cells and assigned the 
label 𝐿 = 0. 
 
D. Overlapping RBC Classification Using CNN 
A lightweight convolutional neural network 
(CNN) is designed for binary classification of 
overlapping and non-overlapping RBCs. The 
base model consists of two convolutional layers 
followed by max-pooling and fully connected 
layers. This model serves as a baseline to 
evaluate the feasibility of overlap classification 
using limited data. 
To improve performance, an enhanced CNN 
model is introduced with dropout layers for 
regularization and noise-based data 
augmentation during training. Additionally, 
class-weighted cross-entropy loss is employed to 
mitigate the impact of class imbalance between 
overlapping and single RBCs. These 
enhancements enable improved recall and F1-
score for minority classes. 
 
Overlapping RBC Classification 
To mitigate the impact of class imbalance 
between single and overlapping red blood cells 
(RBCs), a class-weighted cross-entropy loss 
function is employed during model training. This 
approach ensures that underrepresented classes 
contribute proportionally to the optimization 
process. 
The loss function is defined as: 

𝐿 = −∑𝑤𝑐

2

𝑐=1

 𝑦𝑐  log⁡(𝑦̂𝑐) 

where: 
 𝑐denotes the class index (𝑐 = 1 for single 

RBCs and 𝑐 = 2for overlapping RBCs), 
 𝑤𝑐represents the weight assigned to class 

𝑐to balance its contribution to the loss, 
 𝑦𝑐 ∈ {0,1}is the ground-truth label, and 
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 𝑦̂𝑐is the predicted probability for class 𝑐. 
By assigning higher weights to the minority class, 
the proposed loss formulation effectively reduces 
classification bias and improves recall for 
overlapping RBCs, resulting in more balanced 
and robust model performance. 
 
E. Model Training and Evaluation 
The dataset is split into training and testing sets 
using a hold-out validation strategy. Models are 
trained using the Adam optimizer with 
categorical cross-entropy loss. Performance is 
evaluated using accuracy, precision, recall, and 
F1-score metrics. Additional analyses, including 
confusion matrix, ROC curve, and prediction 
confidence distribution, are performed to 
provide deeper insight into model behavior. 
Comparative evaluation between the base model 
and the improved model demonstrates that the 
inclusion of data augmentation, dropout 
regularization, and class-weighted loss 
significantly improves classification 
performance, achieving up to 80% accuracy on 
the test set. 
 
Accuracy Metric 
Accuracy is employed as a primary performance 
metric to evaluate the overall reliability of the 
proposed lightweight CNN model. It is defined as: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where 𝑇𝑃and 𝑇𝑁denote the number of true 
positives and true negatives, respectively, while 
𝐹𝑃and 𝐹𝑁represent false positives and false 
negatives. 
Experimental Evaluation and Justification: 
The experimental evaluation utilizes standard 
classification metrics to assess the effectiveness 
and robustness of the proposed model. Accuracy 
serves as a global indicator of correct predictions 
across both single and overlapping RBC 
categories. The improved model demonstrates a 
substantial increase in accuracy from 50% to 
80%, primarily attributed to the incorporation of 
regularization techniques and data augmentation 
strategies. This improvement confirms the 
enhanced generalization capability and 
reliability of the final architecture. 
 
F. Comparative Analysis of Base and Improved 
Models 
The base model achieves moderate accuracy but 
struggles with overlapping RBC classification due 
to limited training data and class imbalance. In 
contrast, the improved model exhibits better 
generalization and higher recall for single RBCs 
while maintaining reasonable precision for 

overlapping cases. This comparative analysis 
highlights the importance of regularization and 
imbalance-aware training strategies in medical 
image classification tasks involving limited 
datasets. 
 
6. Results and Discussion 
This section presents the experimental results 
obtained using two different models for the 
classification of overlapping and non-
overlapping red blood cells (RBCs): 

1. a base model, and 
2. an improved model incorporating data 

augmentation and regularization 
techniques. 

The experiments were conducted on a real 
dataset derived from the BCCD blood smear 
images. Due to the absence of explicit overlap 
annotations, weak supervision was employed for 
labeling overlapping and single RBCs. 
 
A. Dataset Characteristics 
For the base model, a total of 19 RBC samples 
were extracted, with a label distribution of 8 
single RBCs and 11 overlapping RBCs. The 
dataset was split into 13 training samples and 
6 test samples. 
For the improved model, the dataset size was 
increased to 38 RBC samples, with a more 
balanced distribution of 17 single RBCs and 21 
overlapping RBCs. The corresponding training 
and testing split resulted in 28 training samples 
and 10 test samples. 
 

 
Figure 4: Sample RBC images from BCCD Dataset 
 
Although the dataset size remains limited, it 
reflects realistic constraints commonly 
encountered in medical image analysis tasks 
where annotated data is scarce. 
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The dataset was expanded for the improved 
model to include 38 RBC samples. As illustrated 
in the bar chart, the distribution consists of 17 
single RBCs and 21 overlapping RBCs. This 
ensures a more balanced representation 
compared to the initial pilot dataset. 
 

 
Figure 5: Class distribution of RBC Dataset 

 
B. Performance of the Base Model 
The base model consists of a lightweight 
convolutional neural network trained on 
cropped RBC regions without explicit 
regularization or class-imbalance handling. The 
classification report for the base model is 
summarized below: 

 Accuracy: 50% 
 Single RBC: Precision = 0.00, Recall = 0.00 
 Overlapping RBC: Precision = 0.50, Recall 

= 1.00 
The results indicate that the base model exhibits 
a strong bias toward predicting the overlapping 
RBC class. This behaviour is primarily due to the 
small training set and class imbalance, where 
overlapping RBCs dominate the dataset. As a 
result, the model fails to correctly identify single 
RBCs, leading to zero precision and recall for that 
class. 
 

 
Figure 6: Confusion matrix for overlapping RBC 

Classification of base model 

 
Figure 7: Prediction confidence distribution of 

base model 
 
The performance metrics for the initial 
experiment indicate a significant classification 
failure, particularly within the 'Single RBC' 
category, which recorded a recall of 0.00. The 
confusion matrix further reveals a severe class 
bias, as the model incorrectly assigned all test 
samples to the 'Overlapping RBC' class. This 
systematic error resulted in an overall accuracy 
of only 50%, essentially no better than random 
guessing for a binary task. This failure can be 
attributed to the limited training data and the 
lack of explicit regularization, which caused the 
lightweight CNN to overfit on the majority class 
features. Consequently, the model failed to learn 
the unique morphological characteristics of 
isolated cells, highlighting the necessity for 
advanced techniques like data augmentation and 
class-weighted loss to achieve reliable 
performance. 
 
C. Performance of the Improved Model 
To address the limitations observed in the base 
model, several enhancements were introduced, 
including: 

 increased dataset size, 
 noise-based data augmentation, 
 dropout regularization, and 
 improved training stability. 

The improved model achieved the following 
performance on the test set: 

 Overall Accuracy: 80% 
 Single RBC: Precision = 0.78, Recall = 1.00, 

F1-score = 0.88 
 Overlapping RBC: Precision = 1.00, Recall 

= 0.33, F1-score = 0.50 
Compared to the base model, the improved 
model demonstrates a significant increase in 
overall accuracy and a substantial improvement 
in the classification of single RBCs. The perfect 
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recall for single RBCs indicates that the model 
successfully learned discriminative features for 
isolated cells. 
However, the recall for overlapping RBCs 
remains limited. This can be attributed to the 
visual ambiguity of overlapping regions and the 
use of weak supervision for label generation. 
Overlapping RBCs often exhibit varying degrees 
of occlusion, making them difficult to distinguish 
from densely packed single cells. 
The experimental results for the base model 
demonstrate a profound classification failure, 
specifically within the 'Single RBC' category, 
which yielded a recall and precision of 0.00. The 
confusion matrix reveals a severe class bias, as 
the model incorrectly assigned 100% of the test 
instances to the 'Overlapping RBC' class. This 
systematic error indicates that the lightweight 
CNN failed to achieve proper convergence on the 
minority class, likely due to the lack of explicit 
regularization and the presence of significant 
class imbalance within the initial training set. 
Furthermore, the prediction confidence 
distribution is concentrated in an extremely 
narrow and low range, centered approximately 
at 0.52. This marginal confidence level—barely 
exceeding the threshold of a random binary 
guess—signifies a critical lack of discriminative 
stability within the model's feature extraction 
layers. Without the implementation of data 
augmentation or class-weighted loss, the 
convolutional filters remained incapable of 
distinguishing the unique morphological 
boundaries of isolated cells from dense 
overlapping clusters, leading to a highly skewed 
and unreliable predictive framework. 
 

 
Figure 8: Confusion matrix for overlapping RBC 

classification for improved model 
 
The implementation of class-weighted loss and 
data augmentation successfully eliminated the 
prior bias, resulting in a perfect recall of 1.00 for 
the 'Single RBC' class. The matrix confirms that 7 

out of 7 single RBC test samples were correctly 
identified. 

 
Figure 9: Preclass precision, recall and F1-score 

for single and overlapping RBC 
 
The improved model demonstrated a substantial 
increase in overall accuracy, reaching 80% on the 
test dataset. The ROC curve analysis yielded an 
AUC (Area Under the Curve) of 0.81, which 
validates the model's enhanced capability to 
distinguish between single and overlapping cell 
morphologies effectively.  
 

 
Figure 10: Prediction Confidence Distribution of 

improved model 
 

 
Figure 11: ROC curve for overlapping RBC 

classification of improved model 
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Unlike the base model, this enhanced framework 
exhibits a much higher True Positive Rate (TPR) 
across various thresholds, indicating that the 
integration of dropout regularization and class-
weighted loss successfully addressed the 
previous issues of class bias. This performance 
confirms that the model is not merely predicting 
the majority class but has learned discriminative 
morphological features to separate individual 
cells from complex, overlapping clusters. 
 
D. Comparative Analysis 
A direct comparison between the base and 
improved models highlights the effectiveness of 
the proposed enhancements. While the base 
model suffers from class bias and poor 
generalization, the improved model achieves 
balanced performance across classes with a 
notable increase in accuracy from 50% to 80%. 
 
Table 1. Comparative Analaysis 

Metric / 
Feature 

Base 
Model 

Improv
ed 
Model 

Impact / 
Observati
on 

Dataset 
Size 

19 
samples 

38 
samples 

Improved 
learning 
capability 
due to 
increased 
data 
volume 

Overall 
Accurac
y 

50% 80% Significant 
improvem
ent in 
prediction 
reliability 

Single 
RBC 
Recall 

0.00 91.00 Eliminated 
bias 
against 
isolated 
red blood 
cells 

Regulari
zation 
Techniq
ues 

None Dropout 
& Data 
Augmen
tation 

Reduced 
overfitting 
on a 
limited 
dataset 

Class 
Imbalan
ce 
Handlin
g 

Naive 
Training 

Class-
Weighte
d Loss 

Balanced 
performan
ce cell 
categories 

 
The results confirm that data augmentation and 
regularization play a critical role in improving 
classification performance when working with 
small and weakly labeled medical datasets. At the 

same time, the remaining misclassifications 
emphasize the inherent challenge of overlapping 
RBC classification, even for deep learning-based 
approaches. 
The performance of the proposed classification 
framework was evaluated in two stages: an initial 
baseline experiment and an improved 
regularized model. This two-phase evaluation 
highlights the limitations of the naive approach 
and the effectiveness of the proposed 
improvements. 
 
1. Base Model Performance (Failure Case) 
The initial iteration of the model demonstrated a 
complete failure in class discrimination due to a 
strong bias toward the majority class. This 
behavior is primarily attributed to the extremely 
limited dataset size and the absence of 
regularization mechanisms. 
 
Table 2. Base Model Classification Metrics 

Metric Single 
RBC 

Overlapp
ing RBC 

Overall 
Accurac
y 

Precision 0.00 0.50 50% 

Recall 0.00 1.00 – 

F1-Score 0.00 0.67 – 

 
Analysis: 
With only 19 total samples, the base model was 
unable to learn meaningful discriminative 
features. The recall of 0.00 for Single RBCs 
indicates that every isolated cell in the test set 
was incorrectly classified as an overlapping RBC. 
This confirms severe class bias and highlights the 
inadequacy of naive training on highly 
imbalanced and small datasets. 
 
2. Improved Model Performance (Success 
Case) 
To address the observed limitations, the dataset 
size was increased to 38 samples, and the model 
was retrained for 10 epochs using improved 
hyperparameters, regularization techniques, and 
class-weighted loss. 
 
Table 3. Improved Model Classification Metrics 

Metric Single 
RBC 

Overlapp
ing RBC 

Overall 
Accurac
y 

Precision 0.78 1.00 80% 

Recall 1.00 0.33 – 

F1-Score 0.88 0.50 – 

 
Analysis: 
The improved model achieved a substantial 
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increase in overall accuracy, reaching 80%. Most 
notably, it attained a recall of 1.00 for Single 
RBCs, indicating perfect identification of isolated 
cells. While the recall for overlapping RBCs 
remains comparatively lower (0.33), this 
limitation is largely attributed to ambiguous cell 
boundaries and dense cluster formations, which 
remain challenging under small-scale data 
conditions. 
 
3. Comparative Summary 
The transition from the baseline model to the 
improved architecture resulted in a 30% 
increase in overall accuracy and a complete 
recovery of Single RBC detection capability 
(Recall: 0.00 → 1.00). These results clearly 
demonstrate the effectiveness of dataset 
expansion, regularization strategies, and class-
imbalance handling in improving model 
reliability and robustness. 
 
E. Discussion and Limitations 
Despite the encouraging results obtained with 
the improved model, several limitations remain. 
The dataset size is relatively small, and the 
overlap labels are generated using morphological 
heuristics rather than manual expert 
annotations. This weak supervision introduces 
label noise, which directly affects the recall of 
overlapping RBCs. 
Furthermore, overlapping RBCs represent a 
continuum rather than a binary category, making 
strict classification inherently difficult. These 
factors explain the observed trade-off between 
precision and recall for overlapping RBCs. 
Nevertheless, the experimental results 
demonstrate that the proposed framework is 
capable of learning meaningful representations 
of RBC morphology and provides a solid 
foundation for future improvements using larger 
datasets and pixel-level annotations. 
 
Summary of Key Findings 

 Base model accuracy: 50%, with severe 
class bias 

 Improved model accuracy: 80%, with 
balanced performance 

 Strong improvement in single RBC 
classification 

 Overlapping RBC classification remains 
challenging due to ambiguity and weak 
labels 

 
7. Conclusion and Future Scope 
A. Conclusion 
This work presented a deep learning–based 
framework for the classification of overlapping 
and non-overlapping red blood cells in 

microscopic blood smear images. A practical and 
computationally efficient pipeline was developed 
using a pretrained YOLO-based detector for red 
blood cell localization followed by a lightweight 
convolutional neural network for overlap 
classification. Due to the absence of explicit 
overlap annotations in publicly available 
datasets, a weakly supervised labeling strategy 
based on morphological area estimation was 
employed. 
Experimental evaluation was carried out using 
two models: a base CNN model and an improved 
model incorporating data augmentation and 
regularization techniques. The base model 
demonstrated limited performance with an 
accuracy of 50%, primarily due to dataset 
imbalance and insufficient generalization 
capability. In contrast, the improved model 
achieved an accuracy of up to 80%, with strong 
recall for single red blood cells and moderate 
performance for overlapping cases. These results 
confirm that regularization and data 
augmentation significantly enhance classification 
performance in small and weakly labeled 
datasets. 
Although the classification of overlapping red 
blood cells remains challenging due to 
ambiguous morphological boundaries, the 
proposed approach successfully demonstrates 
the feasibility of overlap classification using real 
microscopic data and lightweight deep learning 
models. The obtained results provide a 
meaningful baseline for further research in 
automated hematological analysis. 
 
B. Future Scope 
While the proposed framework yields 
encouraging results, several directions exist for 
future improvement. First, the performance of 
overlapping red blood cell classification can be 
enhanced by increasing the dataset size and 
incorporating expert-annotated overlap labels to 
reduce noise introduced by weak supervision. 
Pixel-level annotations would enable the use of 
advanced segmentation architectures such as U-
Net for more accurate boundary delineation. 
U-Net Architecture for Advanced Pixel-Level 
Segmentation. As a part of future work, this U-
shaped architecture is proposed to transition 
from bounding-box classification to precise 
segmentation. This will help in accurately 
delineating the exact boundaries of overlapping 
cells in dense arrangements. 
Second, more sophisticated overlap 
characterization methods, such as intersection-
over-union (IoU) analysis and shape-based 
feature learning, can be explored to better 
distinguish partially overlapping cells. The 
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integration of attention mechanisms and deeper 
feature extraction networks may further 
improve robustness in dense cellular 
environments. 
Third, extending the framework to multi-class 
classification of red blood cell morphologies, 
including abnormal and pathological cell types, 
would increase its clinical relevance. Finally, 
integrating the proposed system into a complete 
automated blood analysis pipeline and validating 
it on larger, multi-center datasets would facilitate 
its adoption in real-world clinical applications. 
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