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Abstract 
 
In this paper, some magnetized cosmological model with 
cosmological constant   in Rosen’s bimetric theory of 
gravitation is investigated  by using the techniques of Letelier 
and Stachel. The nature of the model is discussed in presence 
and in absence of the magnetic field as well as in the presence 
and in the absence of cosmological constant. Our model exists 
and it never goes to vacuum model for cosmological constant is 
not equal to zero and for finite value of cosmic time and it 
approaches to vacuum model  when the cosmic time tends to 
minus infinity, in the presence of magnetic field. Further in the 
absence of magnetic field, model exists if cosmological 
constant is negative and n  lies between zero and half and our 
model filled with dark matter if cosmological constant is 
positive and n  greater than half. 
Mathematics Subject Classification 2020:  83D-XX, 83F-XX, 
83F05 

 
INTRODUCTION 
The Rosen’s bimetric theory(1977)  is the theory of gravitation based on two metrics. One is the 

fundamental metric tensor ijg  describes the gravitational potential and the second metric  ij  

refers to the flat space–time and describes the inertial forces associated with the acceleration of 

the frame of reference. The metric tensors ijg
 

determine the Riemannian geometry of the 

curved space time which plays the same role as given in Einstein’s general relativity and it 

interacts with matter. The background   metric ij  refers to the geometry of the empty universe 

(no matter but gravitation is there) and describes the inertial forces. The metric tensor ij  has 

no direct physical significance but appears in the field equations. Therefore it interacts with  ijg  

but not directly with matter. One can regard  ij  as giving the geometry that would exists if 

there were no matter.  In the absence of matter one would have ijg = ij .   

 
Thus at every point of space–time, there are two metrics 

https://journals.mriindia.com/
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                                                    2 ji

ij dxdxgds = ,                                                (1)     

                                                  ji

ij dxdxd  =2    .                                                (2) 

The field equations of Rosen’s (1974) bimetric theory of gravitation are  
 

                                           j

i

j

i

j

i

j

i kTgNN  8
2

1
−=+−    ,                                        (3)   

where i

iNN =  , 

g
k =  together with )det( ijgg =  and )det( ij = . Here the vertical bar ( )|  

stands for  –covariant differentiation and j

iT  is the energy–momentum tensor of matter fields. 

 
Several aspects of bimetric theory of gravitation have been studied by Rosen (1974, 1977), 
Goldman (1976), Karade (1980), Katore et al. (2006), Isrelit (1981), Khadekar et al. (2007). In 
particular, Reddy et al. (1998) have obtained some Bianchi Type cosmological models in 
bimetric theory of gravitation. The purpose of Rosen’s bimetric theory is to get rid of the 
singularities that occur in general relativity that was  
appearing in the big–bang in cosmological models and therefore, recently, there has been a lot 
of interest in cosmological models in related to Rosen’s bimetric theory of gravitation.   
 
In the context of general relativity cosmic strings do not occur in Bianchi Type models. In it 
some Bianchi Type cosmological models – two in four and one in higher dimensions– are 
studied by Krori et al. (1994). They showed that the cosmic strings do not occur in Bianchi Type 
V cosmology.  Bali and Dave (2003), Bali and Upadhaya (2003), Bali and Singh (2005) have 
investigated Bianchi Type IX, I and V string cosmological models under different physical 
conditions in general relativity. Raj Bali and Anjali (2006) have investigated Bianchi Type I 
magnetized string cosmological model in general relativity by introducing the condition  

( )nBCA=
 , 

where 0n  in Einstein field equations, whereas  Raj Bali and Umesh Kumar 

Pareek (2007) have deduced  Bianchi Type I string dust cosmological model  with magnetic field 

in general relativity by imposing the condition ( ) n
BCNA

−
= ,

 where 0n  and N is 

proportionality constant, in Einstein field  equations. Further Borkar et al. (2009, 2010), 
Gaikwad et al. (2011) and Kandalkar et al. (2011) have been investigated many magnetized 
cosmological models in bimetric theory of gravitation by using the techniques of Letelier and 
Stachel [(1979, 1983), 1980].  
 

In this paper,   some magnetized cosmological model with  -term in Rosen’s bimetric theory of 
gravitation is investigated by using the techniques of Letelier and Stachel [(1979, 1983), 1980] 

and using the condition ( )nBCA= , where 0n  in Rosen’s field equations. The physical and 

geometrical significance of the model are discussed in presence and in absence of the magnetic 

field as well as in the presence and in the absence of cosmological constant . 
 
SOLUTIONS OF ROSEN’S FIELD EQUATIONS 
We consider Bianchi Type I metric in the form 

                                  
22222222 dzCdyBdxAtdds +++−=   ,                                  (4) 

where BA   , and C are functions of t alone. Here CB   otherwise we get LRS Bianchi Type I 

model. 
 
The flat metric corresponding to metric (4) is 

                                         
22222 dzdydxdtd +++−= .                                           (5) 
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The energy momentum tensor j

iT  for the string dust with magnetic field is taken as 

 

                               j

i

j

i

j

i

j

i

j

i ExxgppT +−++= )(  ,                           (6) 

with 

                                                  1−=−= i

ii

i xx ,                                                  (7) 

               

                                                           
0=i

i x
.                                                            (8) 

In this model   and   denote the rest energy density and the string tension density of the 

system respectively, p is the pressure, i  is the flow vector and ix  the direction of strings. 

 

The electromagnetic field ijE   is given by Lichnerowicz (1967)  

 







−







+= jiijjiij hhghE

2

12
   .                                (9)  

                                 

The four velocity vector i  is given by 

 

                                                      
1−=ji

ijg 
.                                                      (10)  

                                                  

and   is the magnetic permeability and ih  is the magnetic flux vector defined by 

 

                                                  jkl

ijkli F
g

h 



−

=
2

  ,                                              (11) 

where klF  is the electromagnetic field tensor and ijkl  is the Levi Civita tensor density. 

Assume the comoving coordinates and hence we have 
  

1,0 4321 ====  . 
Further we assume that the incident magnetic field is taken along x–axis, so that  

0,0 4321 === hhhh . 

 
The first set of Maxwell’s equation 

                                                               0, =kijF
   ,                                                    (12) 

yield 

)(constant23 sayHF == . 

 
Due to the assumption of infinite electrical conductivity, we have 

0342414 === FFF .
 

The only non–vanishing component of ijF  is 23F . 

 
 
 
So that  
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BC

AH
h


=1

                                                         (13) 
and 

                                                     
222

2
2

CB

H
h
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=

.                                                    (14) 
 
From equation (9), we obtain 
 

                                               
22

2
4

4

3

3

2

2

1

1
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H
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=−===−

  .                         (15) 
 
Equation (6) of energy momentum tensor yield 
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The Rosen’s field equations (3) for the metric (4) and (5) with   the help of (16) gives 
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where etc.  ,  , 444
dt

dC
C

dt

dB
B

dt

dA
A ===  

 
From equations (18) and (19), we obtain 
 

                                            
2

2

4
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.                                                 (21) 
 
Equations   (17) and (18) leads to 
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where 
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.    
2

2



H
K =  

 
Equations (20) and (22), after using string dust condition ( )=  [ Zel’dovich(1980) ], lead to 

 

                     +
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
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Equations (17) to (20) are four equations, in six unknowns pand,C,B, ,A  and 

therefore to deduce a determinate solution, we assume two extra conditions. First is that the 

component 1

1  of shear tensor 
j

i  is proportional to the expansion ( )  which leads to 

                                               ( )nBCA= , where 0n                                               (24) 
 
and second is  Zel’dovich condition  

= . 

 
Using the first condition (equation (24)), in  equation (23) , we write 

        +=++−++−− − 2)(16)13()13()13()31( 1

2

2

4

2

2

44444 nBCK
C

C
n

B

B
n

C

C
n

B

B
n  .  (25) 

 
Now the equation (21), rewrite as 
 

                                              

( )
( ) C

C

B

B

BCCB

BCCB
44

44

444 +=
−

−

,                                           (26) 
 
 
 
which on integrating , we get 
 

                                                     

LBC
C

B
C =









4

2

.                                                   (27) 
 
where L  is the constant of integration. 
 

Assume
v

CvBv
C

B
BC


 ==== 22 ,then,

 
. In view of these relations, equation (27) 

becomes 

                                                             
L

v

v
=4

 .                                                          (28) 

Now equation (25) after using (24) and assumptions v
C

B
BC == and  leads to 
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 The expressions   (28) and (29) yield 

                                       



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n

n8
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4
22
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4
44 ,                                    (30) 

 
which reduces to 

                                    


+−=− K
n

f
f

d

d n8
3

4
2

2
2 ,                                (31) 

where )(4  f= .  

The differential equation (31) has solution 
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 log
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 ,                                (32) 

 
where P  is the constant of integration. 
 
From equation (28) we write 
 

                       b

nnn
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dL
v
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 ,                      (33) 

where b  is the constant of integration. 
 

Now, using )(4  f=  and expression (32), the metric (4) will be 
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where v is determined by equation (33).  
 

After suitable transformation of co–ordinates  ,T= ZzYyXx === ,,  i.e., 

dZdzdYdydXdxdTd ==== ,,,  , above metric can be re–written as 
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Now choosing the cosmic time logu T=  . For convenience, we can select logu T= − , then the 

model (35) goes over to  
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This is the Bianchi Type I magnetized cosmological model with   - term in bimetric theory of 
gravitation. 
 
PHYSICAL QUANTITIES  

The energy density ( )  , the string tension density ( ) , the pressure ( )p  for the model (36) (in 

terms of cosmic time u ) are given by 
 

                ( )
( ) ( ) unu Ke

n

n
e

n

n 21

3

14
)(

24

12 +
−

−
== +


  ,   

2

1
0  n

                       (37) 

                                           unu Keep 21

3

2
)(

12
−

−
= +


.                                           (38) 

 
respectively.  For 0  and finite u , the condition      0  and    p   0   satisfies if  

                  

                          
( )
( )

11 )(8)(
12

14
8 −−−− −

−

+ nunu eKeK
n

n
 .                          (39) 

 and ,0=  0=p  gives   n  = 0  , which contradicts to the fact that 0n . Thus the model 

never goes to vacuum model, for finite value of u  and for 0 . 

The strong energy conditions of Hawking and Ellis (1973): ( ) 0− p  and  ( ) 0+ p  are 

satisfies by our model (36) if   
   

                   
( )
( )

( ) 11 )(168      )(
14

12
8 −−−− +−

−

+ nunu eKneK
n

n
 .                      (40) 

 

The expansion    given by 







++

C

C

B

B

A

A 444

 and for the model (36), it has the value 

uefn  )1( += , 

which (after using (32)) reduces to  
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The components of shear tensor ( )j

i  are given by 
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                                                   04
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Special Case: In the absence of magnetic field i.e. for 0=K , we yield 
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
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                                                             04

4 =     .                                                      (52) 

 
CONCLUSION  
There is no big-bang and big crunch singularities in our model (36). It is interesting to note that 
the cosmological constant  playing the important role in our model. From the equations (37), 

(38) and (39), it is seen that the rest energy density  , string tension density  and pressure 

p all are positive if   lies in the open interval, equation (39), for n  is not equal to half and for 

finite u . This shows that such a Bianchi Type I magnetized cosmological model (36) in bimetric 

theory of gravitation exists when cosmological constant  lies in the open interval equation 
(39). It never  
goes to vacuum model for  is not equal to zero and for finite value of u . When −→u  then 

−→ , −→  and when →u  then → , → . This confirms that the model is 
expanding as well as shearing. The expansion and the shear in the model increases as cosmic 
time u  increases. Further when →u then →=  , →p . When −→u   then 

0→=   and 0→p , which shows that our model goes over to vacuum model, when the 

cosmic time u  is minus infinity.  
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In the special case, in the absence of magnetic field i.e., 0=K , from the equation (46) and 

(47), it is seen that our model (36) exists if  is negative and n  between zero and half and if 

the cosmological constant 0 , then our model filled with dark matter for n greater than half, 

for finite value of cosmic time u   in the absence of magnetic field K . Also the expansion and 
shear in the model increases, as the cosmic time u  increases.  
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